Herein, we show that the two-photon (TP) transition probability (δTP) of o-betaine system will reach its maximum value at a twist angle around 65°. However, the potential energy scan with respect to the twist angle between its two rings indicates that the molecule in its ground state is quite unstable at this twist angle. Out of the different possibilities, the one having a single methyl group at the ortho position of the pyridinium ring is found to attain the optimum twist angle between the two rings, and interestingly, this particular substituted o-betaine has larger δTP value than any other substituted or pristine o-betaine. The twist angle dependent variation of δTP has been explained by employing the generalized-few-state-model formula for 3D molecules. The results clearly reveal that the magnitude of ground to excited state and excited state dipole moment vectors as well as the angle between them are strongly in favor of maximizing the overall δTP values at the optimum twist angle. The constructive interference between the optical channels at the optimum twist angle also plays an important role to achieve the maximum δTP value. Furthermore, to give proper judgment on our findings, we have also performed solvent phase calculations on all the model systems in nonpolar solvents, namely, cyclohexane and n-hexane, and the results are quite consistent with the gas phase findings. The present study will definitely offer a new way to synthesize novel two-photon active material based on o-betaine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp304456w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!