Up to fourth virial coefficients from simple and efficient internal-coordinate sampling: application to neon.

J Chem Phys

Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand.

Published: July 2012

A simple and efficient internal-coordinate importance sampling protocol for the Monte Carlo computation of (up to fourth-order) virial coefficients ̅B(n) of atomic systems is proposed. The key feature is a multivariate sampling distribution that mimics the product structure of the dominating pairwise-additive parts of the ̅B(n). This scheme is shown to be competitive over routine numerical methods and, as a proof of principle, applied to neon: The second, third, and fourth virial coefficients of neon as well as equation-of-state data are computed from ab initio two- and three-body potentials; four-body contributions are found to be insignificant. Kirkwood-Wigner quantum corrections to first order are found to be crucial to the observed agreement with recent ab initio and experimental reference data sets but are likely inadequate at very low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4731344DOI Listing

Publication Analysis

Top Keywords

virial coefficients
12
fourth virial
8
simple efficient
8
efficient internal-coordinate
8
internal-coordinate sampling
8
coefficients simple
4
sampling application
4
application neon
4
neon simple
4
sampling protocol
4

Similar Publications

Nonspecific protein-protein interactions (PPIs) are key to understanding the behavior of proteins in solutions. However, experimentally measuring anisotropic PPIs as a function of orientation and distance has been challenging. Here, we propose to measure a new parameter, the generalized second virial coefficient, (), to address this challenge.

View Article and Find Full Text PDF

We apply the methodology of Lustig, with which rigorous expressions for all thermodynamic properties can be derived in any statistical ensemble, to derive expressions for the calculation of thermodynamic properties in the path integral formulation of the quantum-mechanical isobaric-isothermal (NpT) ensemble. With the derived expressions, thermodynamic properties such as the density, speed of sound, or Joule-Thomson coefficient can be calculated in path integral Monte Carlo simulations, fully incorporating quantum effects without uncontrolled approximations within the well-known isomorphism between the quantum-mechanical partition function and a classical system of ring polymers. The derived expressions are verified by simulations of supercritical helium above the vapor-liquid critical point at selected state points using recent highly accurate ab initio potentials for pairwise and nonadditive three-body interactions.

View Article and Find Full Text PDF

Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.

View Article and Find Full Text PDF

We present a method, FMAPS(q), for calculating the structure factor, , of a protein solution, by extending our ast Fourier transform-based odeling of tomistic rotein-protein interactions (FMAP) approach. The interaction energy consists of steric, nonpolar attractive, and electrostatic terms that are additive among all pairs of atoms between two protein molecules. In the present version, we invoke the free-rotation approximation, such that the structure factor is given by the Fourier transform of the protein center-center distribution function .

View Article and Find Full Text PDF

Refined Protein-Sugar Interactions in the Martini Force Field.

J Chem Theory Comput

November 2024

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.

Sugar molecules play important roles as mediators of biomolecular interactions in cellular functions, disease, and infections. Molecular dynamics simulations are an indispensable tool to explore these interactions at the molecular level. The large time and length scales involved frequently necessitate the use of coarse-grained representations, which heavily depend on the parametrization of sugar-protein interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!