The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369759 | PMC |
http://dx.doi.org/10.1021/cn200006h | DOI Listing |
Nanomaterials (Basel)
February 2025
Deparment of Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
Hydrated anatase (101) titanium dioxide surfaces with oxygen vacancies have been studied using a combination of classical and ab initio molecular dynamics simulations. The reactivity of surface oxygen vacancies was investigated using ab initio calculations, showing that water molecules quickly adsorb to oxygen vacancy sites upon hydration. The oxygen vacancy then quickly reacts with the adsorbed water, forming a protonated bridging oxygen atom at the vacancy site and at a neighboring oxygen bridge.
View Article and Find Full Text PDFRSC Med Chem
February 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
Protein-protein interactions (PPIs) are key regulators of various cellular processes. Modulating PPIs with small molecules has gained increasing attention in drug discovery, particularly targeting the 14-3-3 protein family, which interacts with several hundred client proteins and plays a central role in cellular networks. However, targeting a specific PPI of the hub protein 14-3-3, with its plethora of potential client proteins, poses a significant selectivity challenge.
View Article and Find Full Text PDFCurr Pharm Des
March 2025
Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Background: Anaplastic Lymphoma Kinase (ALK) is implicated in several cancers, including anaplastic large cell lymphoma, non-small cell lung cancer, and neuroblastoma. Targeted inhibition of ALK represents a promising therapeutic strategy.
Aims: This study aimed to identify and evaluate potential ALK inhibitors using virtual screening and computational analyses to determine their binding stability, affinity, and dynamic behavior, ultimately assessing their potential as therapeutic agents for ALK-driven cancers.
Sci Rep
March 2025
Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, China.
Cancer treatment remains a pressing challenge, with paclitaxel playing a pivotal role in chemotherapy by disrupting mitotic spindle dynamics through microtubule stabilization. However, the molecular details of paclitaxel interaction with β-tubulin, its target, remain elusive, impeding efforts to overcome drug resistance and optimize efficacy. Here, we employ extensive molecular dynamics simulations to probe the binding modes of paclitaxel within tubulin protofilaments.
View Article and Find Full Text PDFCurr Opin Struct Biol
March 2025
Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA; Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA. Electronic address:
Recent years have seen remarkable gains in the accuracy of atomistic molecular dynamics (MD) simulations of intrinsically disordered proteins (IDPs) and expansion in the types of calculated properties that can be directly compared with experimental measurements. These advances occurred due to the use of IDP-tested force fields and the porting of MD simulations to GPUs and other computational technologies. All-atom MD simulations are now explaining the sequence-dependent dynamics of IDPs; elucidating the mechanisms of their binding to other proteins, nucleic acids, and membranes; revealing the modes of drug action on them; and characterizing their phase separation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!