Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previously, we have shown that SH-SY5Y cells exposed to high concentrations of methadone died due to a necrotic-like cell death mechanism related to delayed calcium deregulation (DCD). In this study, we show that, in terms of their Ca(2+) responses to 0.5 mM methadone, SH-SY5Y cells can be pooled into four different groups. In a broad pharmacological survey, the relevance of different Ca(2+)-related mechanisms on methadone-induced DCD was investigated including extracellular calcium, L-type Ca(2+) channels, μ-opioid receptor, mitochondrial inner membrane potential, mitochondrial ATP synthesis, mitochondrial Ca(2+)/2Na(+)-exchanger, reactive oxygen species, and mitochondrial permeability transition. Only those compounds targeting mitochondria such as oligomycin, FCCP, CGP 37157, and cyclosporine A were able to amend methadone-induced Ca(2+) dyshomeostasis suggesting that methadone induces DCD by modulating the ability of mitochondria to handle Ca(2+). Consistently, mitochondria became dramatically shorter and rounder in the presence of methadone. Furthermore, analysis of oxygen uptake by isolated rat liver mitochondria suggested that methadone affected mitochondrial Ca(2+) uptake in a respiratory substrate-dependent way. We conclude that methadone causes failure of intracellular Ca(2+) homeostasis, and this effect is associated with morphological and functional changes of mitochondria. Likely, this mechanism contributes to degenerative side effects associated with methadone treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385639 | PMC |
http://dx.doi.org/10.1155/2012/642482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!