Nuclear expression of a mitochondrial DNA gene: mitochondrial targeting of allotopically expressed mutant ATP6 in transgenic mice.

J Biomed Biotechnol

Department of Pathobiology, College of Veterinary Medicine, Auburn University, 212 Samford Hall, Auburn, AL 36849, USA.

Published: January 2013

Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE) represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M) or wildtype (A6W) mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P < 0.05), no locomotor differences (gait analysis; P < 0.05) and enhanced endurance in Rota-Rod evaluations (P < 0.05). A6W mice exhibited inferior muscle strength (wire hang test; P < 0.05), no difference in balance beam footsteps, accelerating Rota-Rod, pole test and gait analyses; (P < 0.05) and superior performance in balance beam time-to-cross and constant velocity Rota-Rod analyses (P < 0.05) in comparison to non-transgenic control mice. Mice of both transgenic lines did not differ from non-transgenic controls in a number of bioenergetic and biochemical tests including measurements of serum lactate and mitochondrial MnSOD protein levels, ATP synthesis rate, and oxygen consumption (P > 0.05). This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388500PMC
http://dx.doi.org/10.1155/2012/541245DOI Listing

Publication Analysis

Top Keywords

balance beam
12
analyses 005
12
mitochondrial dna
8
mitochondrial targeting
8
mtdna disease
8
non-transgenic controls
8
wire hang
8
005
7
mitochondrial
6
mice
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!