Previous reports have shown that γδ T cells are important for the elimination of malaria parasites in humans and mice. However, how γδ T cells are involved in protective immunity against blood-stage malaria remains unknown. We infected γδ T-cell-deficient (TCRδ-KO) mice and control wild-type mice with Plasmodium berghei XAT, which is a nonlethal strain. Although infected red blood cells were eliminated within 30 d after infection, TCRδ-KO mice could not clear the infected red blood cells, showed high parasitemia, and eventually died. Therefore, γδ T cells are essential for clearance of the parasites. Here, we found that γδ T cells play a key role in dendritic cell activation after Plasmodium infection. On day 5 postinfection, γδ T cells produced IFN-γ and expressed CD40 ligand during dendritic cell activation. These results suggest that γδ T cells enhance dendritic cell activation via IFN-γ and CD40 ligand-CD40 signaling. This hypothesis is supported strongly by the fact that in vivo induction of CD40 signaling prevented the death of TCRδ-KO mice after infection with P. berghei XAT. This study improves our understanding of protective immunity against malaria and provides insights into γδ T-cell-mediated protective immunity against various infectious diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409789 | PMC |
http://dx.doi.org/10.1073/pnas.1204480109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!