Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz.

J Cell Biol

Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.

Published: July 2012

Cilia play key roles in development and homeostasis, and defects in cilia structure or function lead to an array of human diseases. Ciliogenesis is accomplished by the intraflagellar transport (IFT) system, a set of proteins governing bidirectional transport of cargoes within ciliary axonemes. In this paper, we present a novel platform for in vivo analysis of vertebrate IFT dynamics. Using this platform, we show that the planar cell polarity (PCP) effector Fuz was required for normal IFT dynamics in vertebrate cilia, the first evidence directly linking PCP to the core machinery of ciliogenesis. Further, we show that Fuz played a specific role in trafficking of retrograde, but not anterograde, IFT proteins. These data place Fuz in the small group of known IFT effectors outside the core machinery and, additionally, identify Fuz as a novel cytoplasmic effector that differentiates between the retrograde and anterograde IFT complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392940PMC
http://dx.doi.org/10.1083/jcb.201204072DOI Listing

Publication Analysis

Top Keywords

intraflagellar transport
8
planar cell
8
cell polarity
8
effector fuz
8
ift dynamics
8
core machinery
8
retrograde anterograde
8
anterograde ift
8
ift
6
fuz
5

Similar Publications

Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear.

View Article and Find Full Text PDF

The Primary Cilia are Associated with the Axon Initial Segment in Neurons.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.

The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.

View Article and Find Full Text PDF

Temporal ablation of the ciliary protein IFT88 alters normal brainwave patterns.

Sci Rep

January 2025

Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.

Article Synopsis
  • The primary cilium is a crucial organelle involved in various signaling pathways, and its dysfunction is linked to conditions like Bardet-Biedl syndrome, Alzheimer's, and autism, all of which can lead to cognitive impairment.
  • Researchers studied the effects of temporarily disabling the IFT88 gene, vital for cilia formation, in adult mice to understand cilia's role in brain activity.
  • The findings showed that mice lacking functional cilia had significant learning deficits and abnormal brainwave patterns, emphasizing the importance of primary cilia for proper neural function and memory in adults.
View Article and Find Full Text PDF

Cilia in the fallopian tubes (CFT) play an important role in female infertility, but have not been explored comprehensively. This review reveals the detection techniques for CFT function and morphology, and the related analysis of female infertility and other gynaecological disorders. CFT differentiate from progenitor cells, and develop into primary cilia and motile cilia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!