Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C. jejuni lipooligosaccharide (LOS) structures, generating human nerve ganglioside mimics, is important for intestinal epithelial translocation. We here show that C. jejuni isolates expressing ganglioside-like LOS bound in larger numbers to the Caco-2 intestinal epithelial cells than C. jejuni isolates lacking such structures. Next, we found that ganglioside-like LOS facilitated endocytosis of bacteria into Caco-2 cells, as visualized by quantitative microscopy using the early and late endosomal markers early endosome-associated protein 1 (EEA1), Rab5, and lysosome-associated membrane protein 1 (LAMP-1). This increased endocytosis was associated with larger numbers of surviving and translocating bacteria. Next, we found that two different intestinal epithelial cell lines (Caco-2 and T84) responded with an elevated secretion of the T-cell attractant CXCL10 to infection by ganglioside-like LOS-expressing C. jejuni isolates. We conclude that C. jejuni translocation across Caco-2 cells is facilitated by ganglioside-like LOS, which is of clinical relevance since C. jejuni ganglioside-like LOS-expressing isolates are linked with severe gastroenteritis and bloody stools in C. jejuni-infected patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418735 | PMC |
http://dx.doi.org/10.1128/IAI.06270-11 | DOI Listing |
Benef Microbes
January 2025
Université Paris-Saclay, 27057INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
Probiotics are widely used for their health promoting effects, though a lot remain to be discovered, particularly on their mechanisms of action at the molecular level. The functional genomic approach is an appropriate method to decipher how probiotics may influence human cell fate and therefore contribute to their health benefit. In the present work, we focused on Shouchella clausii (formerly named Bacillus then Alkalihalobacillus clausii), a spore-forming bacterium that is commercially available as a probiotic for the prevention and the treatment of intestinal dysbiosis and related gastrointestinal disorders, such as diarrhoea.
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (MNNITA), Allahabad, India.
The diagnosis of intestinal injury remains a challenge as it is rare in occurrence and transpires in multiple traumatized patients. The deferred finding of injury of intestines upsurges multiple risks such as septicemia, numerous organ failures as well as mortality. In this review, we corroborate with the goals of proposing surrogate biomarkers that consent to the measurement of the permeability of intestines more effortlessly.
View Article and Find Full Text PDFMol Med
January 2025
Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDFNat Commun
January 2025
Biomimetic Systems for Cell Engineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Intestinal epithelial cells are segregated into proliferative crypts and differentiated regions. This organization relies on specific signals, including Wnt3a, which regulates cell proliferation within crypts, and Eph/Ephrin, which dictates cell positioning along the crypt-villus axis. However, studying how the spatial distributions of these signals influences crypt-villus organization is challenging both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!