Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201203362 | DOI Listing |
Chemistry
January 2025
University of Oxford, Inorganic Chemistry Laboratory, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism─whether driven by H, H, or atomic H─remains unclear. In this study, we employ electrical transport measurements and first-principles calculations to investigate the CaH-driven reduction kinetics in epitaxial α-FeO thin films.
View Article and Find Full Text PDFDalton Trans
January 2025
Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50011, USA.
(PhPNP)Ru(H)(Cl)(CO) serves as a precatalyst to a variety of important catalytic transformations but most improvements have been restricted to the replacement of the CO ligand to the hydride or changing the Ph groups of the pincer for other aryl or alkyl groups. The ligand to the hydride is often another hydride and studies that utilize other ligands in catalysis are limited. In this work, we synthesized a series of [(PhPNP)Ru(H)(CO)(L)][BPh] complexes bearing isonitrile, PMe, or a N-heterocyclic ligand to the Ru-H.
View Article and Find Full Text PDFChemistry
January 2025
INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE, CHEMISTRY, HOMI BHABA ROAD, PASHAN, PUNE, 411008, PUNE, INDIA.
In this work, we have reduced CO2 with HBpin to afford borylated methanol product selectively in ~99% yield using Ce[N(SiMe3)2]3(THF)3 as a catalyst. This led to multigram scale isolation of methanol obtained from CO2 reduction via the hydrolysis of borylated methanol, this establishes the potential of Ce[N(SiMe3)2]3(THF)3 as an efficient homogeneous catalyst for the bulk scale methanol synthesis. A practical application of this catalytic system was also shown by reducing CO2-containing motorbike exhaust efficiently and selectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!