The human mitochondrial transcriptome, although produced from a small and compact genome, has revealed surprising complexity in its composition and regulation. Wide variation between individual tRNAs, mRNAs, and rRNAs indicate the importance of post-transcriptional processing, maturation, and degradation mechanisms in the regulation of mitochondrial gene expression. RNA-binding proteins play essential roles in controlling the mitochondrial transcriptome from its synthesis to its destruction and have evolved unique features to complement the unusual features of mitochondrial RNAs. Recent studies have shown how changes in mitochondrial RNAs and their binding proteins can have significant effects on human health. This opens new avenues for investigation of mitochondrial RNA-binding proteins and the mechanisms by which they regulate mitochondrial gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wrna.1128 | DOI Listing |
Immunol Res
January 2025
Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
Mitophagy, the selective degradation of mitochondria by autophagy, plays a crucial role in cancer progression and therapy response. This study aims to elucidate the role of mitophagy-related genes (MRGs) in cutaneous melanoma (CM) through single-cell RNA sequencing (scRNA-seq) and machine learning approaches, ultimately developing a predictive model for patient prognosis. The scRNA-seq data, bulk transcriptomic data, and clinical data of CM were obtained from publicly available databases.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:
As cold-blooded vertebrates, fish are sensitive to environmental changes. The outcome of pathogen infections in fish therefore is highly shaped by hypoxia. The epigenetic regulation of competitive endogenous RNA (ceRNA) bridging non-coding RNAs and mRNAs represents a promising mechanism modulating antibacterial response plus environmental stress.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China. Electronic address:
Neuroinflammation is a key driver of neurological disorders. Evodiamine (EVO), an alkaloid from the traditional Chinese herb Evodia rutaecarpa, possesses potent biological activities, notably anticancer and anti-inflammatory effects. This study investigates EVO's potential to attenuate LPS-induced neuroinflammation, focusing on identifying its therapeutic targets and mechanisms of action.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:
3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!