Purpose: TH-MYCN transgenic mice represent a valuable preclinical model of neuroblastoma. Current methods to study tumor progression in these mice are inaccurate or invasive, limiting the potential of this murine model. The aim of our study was to assess the potential of small animal positron emission tomography (SA-PET) to study neuroblastoma progression in TH-MYCN mice.

Procedure: Serial SA-PET scans using the tracer 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) have been performed in TH-MYCN mice. Image analysis of tumor progression has been compared with ex vivo evaluation of tumor volumes and histological features.

Results: [(18)F]FDG-SA-PET allowed to detect early staged tumors in almost 100 % of TH-MYCN mice positive for disease. Image analysis of tumor evolution reflected the modifications of the tumor volume, histological features, and malignancy during disease progression. Image analysis of TH-MYCN mice undergoing chemotherapy treatment against neuroblastoma provided information on drug-induced alterations in tumor metabolic activity.

Conclusions: These data show for the first time that [(18)F]FDG-SA-PET is a useful tool to study neuroblastoma presence and progression in TH-MYCN transgenic mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594000PMC
http://dx.doi.org/10.1007/s11307-012-0576-9DOI Listing

Publication Analysis

Top Keywords

progression th-mycn
12
th-mycn transgenic
12
transgenic mice
12
th-mycn mice
12
image analysis
12
neuroblastoma progression
8
tumor progression
8
study neuroblastoma
8
analysis tumor
8
th-mycn
7

Similar Publications

Clinical investigations showed that individuals with Alcohol Use Disorder (AUD) have worse Neurological Disease (ND) development, pointing to possible pathogenic relationships between AUD and NDs. It remains difficult to identify risk factors that are predisposing between AUD and NDs. In order to fix these issues, we created the bioinformatics pipeline and network-based approaches for employing unbiased methods to discover genes abnormally stated in both AUD and NDs and to pinpoint some of the common molecular pathways that might underlie AUD and ND interaction.

View Article and Find Full Text PDF
Article Synopsis
  • Amplification of MYCN occurs in 20-30% of neuroblastoma patients and is linked to poor prognosis, with a transgenic mouse model demonstrating its oncogenic role.
  • Mitotic dysregulation is identified as a critical factor in tumor initiation, continuing through tumor progression, with overexpression of mitotic genes found in pre-cancerous neuroblasts.
  • Treatment with antimitotic agents significantly delays tumor formation and prolongs survival, while combining these agents with BCL2 inhibitors shows enhanced effectiveness in targeting MYCN-driven neuroblastoma.
View Article and Find Full Text PDF

Activation of endogenous retrotransposons frequently occurs in cancer cells and contributes to tumor genomic instability. To test whether inhibition of retrotranspositions has an anticancer effect, we used treatment with the nucleoside reverse transcriptase inhibitor (NRTI) stavudine (STV) in mouse cancer models, MMTV-HER2/Neu and Th-MYCN, that spontaneously develop breast cancer and neuroblastoma, respectively. In both cases, STV in drinking water did not affect tumor incidence nor demonstrate direct antitumor effects.

View Article and Find Full Text PDF

Neuroblastoma is a commonly lethal solid tumor of childhood and intensive chemoradiotherapy treatment cures ~50% of children with high-risk disease. The addition of immunotherapy using dinutuximab, a monoclonal antibody directed against the GD2 disialoganglioside expressed on neuroblasts, improves survival when incorporated into front-line therapy and shows robust activity in regressing relapsed disease when combined with chemotherapy. Still, many children succumb to neuroblastoma progression despite receiving dinutuximab-based immunotherapy, and efforts to counteract the immune suppressive signals responsible are warranted.

View Article and Find Full Text PDF

A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!