Enteral (EN) or parenteral (PN) nutrition is used to support critically ill patients until oral feeding resumes. Enteral nutrition is assumed preferable to PN, but the differential influence on immune function is not well defined. Autonomic nervous activity is known to influence innate immune responses, and we hypothesized that EN and PN could influence both autonomic signaling and gene activation in peripheral blood monocytes (PBMs). Ten subjects (aged 18-36 years) received continuous EN or PN for 72 h. Peripheral blood monocytes were isolated from whole blood before and after continuous feeding and were analyzed for gene expression using a microarray platform. Gene expression after feeding was compared from baseline and between groups. To measure autonomic outflow, subjects also underwent heart rate variability (HRV) monitoring during feeding. Time and frequency domain HRV data were compared between groups and five orally fed subjects for changes from baseline and changes over time. During continuous EN and PN, subjects exhibited declines in both time and frequency domain HRV parameters compared with baseline and with PO subjects, indicating a loss of vagal/parasympathetic tone. However, PN feeding had a much greater influence on PBM gene expression compared with baseline than EN, including genes important to innate immunity. Continuous EN and PN are both associated with decreasing vagal tone over time, yet contribute differently to PBM gene expression, in humans. These preliminary findings support assumptions that PN imposes a systemic inflammatory risk but also imply that continuous feeding, independent of route, may impart additional risk through different mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428199PMC
http://dx.doi.org/10.1097/SHK.0b013e31826171b9DOI Listing

Publication Analysis

Top Keywords

gene expression
20
compared baseline
12
enteral parenteral
8
heart rate
8
rate variability
8
expression humans
8
peripheral blood
8
blood monocytes
8
continuous feeding
8
time frequency
8

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!