Polycomb group proteins and their roles in regulating stem cell development.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

Department of Histology and Embryology, Jilin Medical College, Jilin 132013, China.

Published: June 2012

AI Article Synopsis

  • Polycomb group (PcG) proteins help regulate gene expression, specifically repressing genes during stem cell growth and differentiation.
  • The PcG family includes two key complexes: PRC1 and PRC2, which play crucial roles in this regulation.
  • The review focuses on understanding the composition, localization, recruitment, and overall functions of PcG proteins in stem cell development.

Article Abstract

Polycomb group (PcG) proteins are a family of epigenetic regulators responsible for the repression of genes in proliferation and differentiation of stem cells. PcG protein complex consists of two important epigenetic regulators: PRC1 (polycomb repressive complex 1) and PRC2 (polycomb repressive complex 2). In order to further understand the functions of PcG proteins in stem cell growth and differentiation, we review the PcG protein composition, PcG protein localization in the target gene, PcG protein recruitment, and the functions of PcG proteins in the development of stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.3881/j.issn.1000-503X.2012.03.019DOI Listing

Publication Analysis

Top Keywords

pcg protein
16
pcg proteins
12
polycomb group
8
stem cell
8
epigenetic regulators
8
stem cells
8
polycomb repressive
8
repressive complex
8
functions pcg
8
pcg
7

Similar Publications

Functional genomics of primary congenital glaucoma by pathway analysis and functional characterization of CYP1B1 mutations.

Vision Res

December 2024

Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India. Electronic address:

CYP1B1 is the most common gene implicated in primary congenital glaucoma (PCG) - the most common form of childhood glaucoma. How CYP1B1 mutations cause PCG is not known. Understanding the mechanism of PCG caused by CYP1B1 mutations is crucial for disease management, therapeutics development, and potential prevention.

View Article and Find Full Text PDF

Evolutionary Nonindependence Between Human piRNAs and Their Potential Target Sites in Protein-Coding Genes.

J Mol Evol

December 2024

Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Article Synopsis
  • piRNAs are diverse small RNAs that help suppress transposable elements and are linked to protein-coding genes (PCGs) in the human genome.
  • This study utilized statistical analyses to show that there are nonrandom evolutionary forces influencing the relationships between piRNAs and their target PCGs, indicating a bias toward strengthening these connections.
  • Additionally, the research found that potential piRNA target sites are often located in Alu-derived regions of PCGs, highlighting the specific impact of these evolutionary forces on certain genomic areas.
View Article and Find Full Text PDF

Aim: Cerebral ischemic stroke (IS) is one of the leading causes of morbidity and mortality globally. However, the mechanisms underlying IS injury remain poorly understood. Ring finger protein 2 (RNF2), the member of the polycomb family (PcG), has been implicated in diverse biological and pathological conditions.

View Article and Find Full Text PDF

Polycomb protein RYBP facilitates super-enhancer activity.

Mol Med

November 2024

Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.

Background: Polycomb proteins are conventionally known as global repressors in cell fate determination. However, recent observations have shown their involvement in transcriptional activation, the mechanisms of which need further investigation.

Methods: Herein, multiple data from ChIP-seq, RNA-seq and HiChIP before or after RYBP depletion in embryonic stem cell (ESC), epidermal progenitor (EPC) and mesodermal cell (MEC) were analyzed.

View Article and Find Full Text PDF

Polycomb group (PcG) proteins play important roles in hematopoietic stem cell (HSC) self-renewal. Mel18 and Bmi1 are homologs of the PCGF subunit within the Polycomb repressive complex 1 (PRC1). Bmi1 (PCGF4) enhances HSC self-renewal and promotes terminal differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!