Influence of various treatments including povidone-iodine and healing stimulatory reagents in a rabbit ear wound model.

Int Wound J

Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Department of Dermatology, Self Defense Force Hanshin Hospital, Kawanishi, Hyogo, Japan.

Published: October 2013

Selecting an appropriate treatment for a given case of skin wound is crucial for inducing optimal healing. We used an animal model developed from normal rabbit ears in order to assess the efficacy of treatments for skin wounds with or without a wet dressing, anti microbial reagent or topical wound-stimulatory reagents. The degree of healing in each group was evaluated and compared using four histological parameters: (i) degree of reepithelialisation, (ii) amount of granulation tissue formation, and (iii) the number of capillary lumens and (iv) fibroblasts in the granulation tissue. Treatment using wet dressings resulted in an increase in capillary number compared with the open dry wound. Although the retention of povidone-iodine (PI) in wound tissue after application significantly inhibited reepithelialisation (P < 0.05), rinsing PI off with saline was comparable in effect to using only a wet dressing. The three topical reagents, namely, basic fibroblast growth factor, prostaglandin E1 and dibutyryl cyclic adenosine monophosphate, significantly improved reepithelialisation (P < 0.05). In conclusion, wounds should be kept hydrated by applying topical reagents. If there are any signs of bacterial infection, PI can be applied and rinsed later with saline in order to minimise its cytotoxic effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950836PMC
http://dx.doi.org/10.1111/j.1742-481X.2012.01016.xDOI Listing

Publication Analysis

Top Keywords

wet dressing
8
granulation tissue
8
reepithelialisation 005
8
topical reagents
8
influence treatments
4
treatments including
4
including povidone-iodine
4
povidone-iodine healing
4
healing stimulatory
4
reagents
4

Similar Publications

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

Unlabelled: This prospective study was conducted at the Department of Surgery of the Pavlodar branch of the NCJSC "SMU" (Non-profit joint-stock company "Medical University of Semey" based on the city hospital No. 1, surgical hospital of Pavlodar, Kazakhstan.

Purpose: The purpose of research is to evaluate the results of improved autodermoplasty technique for granulating wounds of different origin.

View Article and Find Full Text PDF

Exploiting novel crosslinking chemistry, this study pioneers the use of waterborne polyurethane (WPU) to chemically crosslink porcine-derived gelatin, producing enhanced gelatin hydrogel films through a solvent-casting method. Our innovative approach harnesses the reactive isocyanate groups of WPU, coupling them effectively with gelatin's hydroxyl and primary amino groups to form robust urea and urethane linkages within the hydrogel matrix. This method not only preserves the intrinsic elasticity of polyurethane but also significantly augments the films' tensile strength and strain.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!