Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content.

Bioresour Technol

Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.

Published: September 2012

Microalgae can be converted to an energy-dense bio-oil via pyrolysis; however, the relatively high nitrogen content of this bio-oil presents a challenge for its direct use as fuels. Therefore, hydrothermal pretreatment was employed to reduce the N content in Nannochloropsis oculata feedstock by removing proteins without requiring significant energy inputs. The effects of reaction conditions on the yield and composition of pretreated algae were investigated by varying the temperature (150-225°C) and reaction time (10-60 min). Compared with untreated algae, pretreated samples had higher carbon contents and enhanced heating values under all reaction conditions and 6-42% lower N contents at 200-225°C for 30-60 min. The pyrolytic bio-oil from pretreated algae contained less N-containing compounds than that from untreated samples and the bio-oil contained mainly (44.9% GC-MS peak area) long-chain fatty acids (C14-C18) which can be more readily converted into hydrocarbon fuels in the presence of simple catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.06.007DOI Listing

Publication Analysis

Top Keywords

hydrothermal pretreatment
8
pyrolytic bio-oil
8
nitrogen content
8
reaction conditions
8
pretreated algae
8
bio-oil
5
pretreatment microalgae
4
microalgae production
4
production pyrolytic
4
bio-oil low
4

Similar Publications

This study investigates the sustainable use of spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions.

View Article and Find Full Text PDF

Redefining the product portfolio of oilcane bagasse biorefinery: Recovering natural colorants, vegetative lipids and sugars.

Bioresour Technol

January 2025

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.

View Article and Find Full Text PDF

This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.

View Article and Find Full Text PDF

Lignocellulosic waste, like corn stover (CS), is widely produced and serves as a key feedstock for biofuels and biochemicals. Semi-continuous subcritical water hydrolysis (SWH) is an eco-friendly method that breaks down cellulose and hemicellulose bonds. To boost fermentable sugar (FS) yields, steam explosion (SE) pretreatment was tested on CS, achieving a cellulose content of 74.

View Article and Find Full Text PDF

Hydrothermal pretreatment (HTP) is used to increase the biochemical methane potential (BMP) of food waste (FW). The formation of melanoidins will seriously affect the microbial activity and methane production during anaerobic digestion (AD). Based on spectroscopic methods, similarities and heterogeneity of melanoidins from different sources were investigated, and the wide peak band (260-350 nm) in the ultraviolet region and the differences of amide groups of fructose-amino acid system, fructose-casein system and FW system were revealed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!