Electrochemical based detection of microRNA, mir21 in breast cancer cells.

Biosens Bioelectron

Department of Biomedical Engineering, Faculty of Engineering and Architecture, Katip Celebi University, Izmir, Turkey.

Published: December 2012

In this work, a novel electrochemical microRNA (miRNA) detection method based on enzyme amplified biosensing of mir21 from cell lysate of total RNA was demonstrated. The proposed enzymatic detection method was detailed and compared with the conventional guanine oxidation based assay in terms of detection limit and specificity. For the detection of mir21, capture probes and/or cell lysates were covalently attached onto the pencil graphite electrode (PGE) by coupling agents of N-(dimethylamino)propyl-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (NHS). Having immobilized the capture probe onto the surface of PGE, hybridization was achieved with a biotinylated (from its 3' end) complementary target. Extravidin labeled alkaline phosphatase (Ex-Ap) binds to the biotinylated target due to the interaction between biotin-avidin and the enzyme converts electro-inactive alpha naphtyl phosphate (the substrate) to electro-active alpha naphtol (α-NAP, the product). α-NAP was oxidized at +0.23 V vs Ag/AgCl and this signal was measured by Differential Pulse Voltammetry (DPV). The signals obtained from α-NAP oxidation were compared for the probe and hybrid DNA. The specificity of the designed biosensor was proved by using non-complementary sequences instead of complementary sequences and the detection limit of the assay was calculated to be 6 pmol for cell lysates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2012.05.031DOI Listing

Publication Analysis

Top Keywords

detection method
8
detection limit
8
cell lysates
8
detection
6
electrochemical based
4
based detection
4
detection microrna
4
microrna mir21
4
mir21 breast
4
breast cancer
4

Similar Publications

Testing an Electronic Patient-Reported Outcome Platform in the Context of Traumatic Brain Injury: PRiORiTy Usability Study.

JMIR Form Res

January 2025

Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.

Background: Traumatic brain injury (TBI) is a significant public health issue and a leading cause of death and disability globally. Advances in clinical care have improved survival rates, leading to a growing population living with long-term effects of TBI, which can impact physical, cognitive, and emotional health. These effects often require continuous management and individualized care.

View Article and Find Full Text PDF

Grading systems and perineural invasion in oral squamous cell carcinoma - a disease-specific survival analysis.

Med Oral Patol Oral Cir Bucal

January 2025

Department of Oral Diagnosis, Piracicaba Dental School University of Campinas, 901, Limeira Avenue Postcode: 13414-903. Piracicaba-SP, Brazil

Background: Oral squamous cell carcinoma (OSCC) is an aggressive cancer, with prognosis influenced by clinical variables as well grading systems and perineural invasion (PNI), which are associated to poorer outcomes, including higher rates of recurrence and metastasis. This study aims to evaluate OSCC using three grading systems and assess the impact of PNI and clinicopathologic parameters on patient survival.

Material And Methods: Eighty-one primary OSCC samples were analyzed.

View Article and Find Full Text PDF

Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.

Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.

View Article and Find Full Text PDF

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!