Snake pre-synaptic neurotoxins endowed with phospholipase A(2) activity are potent inducers of paralysis through the specific disruption of the neuromuscular junction pre-synaptic membrane and represent a valuable tool for investigating neuronal degeneration and recovery. They have different structural complexity and a wide range of lethal potency and enzymatic activity, although they share a similar mechanism of action. Although no correlation has been reported between neurotoxicity and enzymatic activity, toxicity increases with structural complexity and phospholipase A(2) oligomers show 10-fold lower LD(50) values compared to their monomeric counterparts. To date, no structural study has been performed on multimeric SPANs with the aim of shedding light on the correlation between structural complexity and neurotoxicity. In the present study, we investigated the structure of taipoxin, a trimeric phospholipase A(2) neurotoxin, as well as that of its subunits, by X-ray crystallography and small angle X-ray scattering analysis. We present the high-resolution structure of two isoforms of the taipoxin β subunit, which show no neurotoxic activity but enhance the activity of the other subunits in the complex. One isoform shows no structural change that could justify the lack of activity. The other displays three point mutations in critical positions for the catalytic activity. Moreover, we designed a model for the quaternary structure of taipoxin under physiological conditions, in which the three subunits are organized into a flat holotoxin with the substrate binding sockets exposed on the same side of the complex, which suggests a role for this interface in the toxin-membrane interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2012.08691.xDOI Listing

Publication Analysis

Top Keywords

structural complexity
12
trimeric phospholipase
8
phospholipase neurotoxin
8
enzymatic activity
8
structure taipoxin
8
activity
7
structural
6
structural analysis
4
analysis trimeric
4
phospholipase
4

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Background: Microsurgery demands an intensive period of skill acquisition due to its inherent complexity. The development and implementation of innovative training methods are essential for enhancing microsurgical outcomes. This study aimed to evaluate the impact of a simulation training program on the clinical results of fingertip replantation surgeries.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.

3D Print Med

January 2025

Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.

Background: Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!