Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new type of pH-sensitive liposomes (fliposomes) was designed based on the amphiphiles that are able to perform a pH-triggered conformational flip (flipids). This flip disrupts the liposome membrane and causes rapid release of the liposome cargo, specifically in response to lowered pH. The flipids (1) and (2) are equipped with a trans-2-aminocyclohexanol conformational switch. pH-sensitive fliposomes containing one or both of these flipids, as well as POPC and PEG ceramide, were constructed and characterized. These compositions were stable at 4°C and pH 7.4 for several months. Fliposomes loaded with ANTS/DPX performed an unusually quick content release within a few seconds at pH below 8.5 (in case of 2) and 6.0 (in case of 1). This difference in pH sensitivity demonstrates a potential for the custom design of flipids by variation of the amino group to target areas with specific pH values. The pH titration curves for the fliposome leakage parallel the curves for the acid-induced conformational flip of 1 and 2 studied by ¹H NMR. A plausible mechanism of pH sensitivity starts with an acid-triggered conformational flip of 1 or 2, which changes the molecular size and shape, shortens the lipid tails, and perturbs the liposome membrane, resulting in the content leakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08982104.2012.698420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!