Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2012.05099.x | DOI Listing |
Adv Biotechnol (Singap)
September 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.
View Article and Find Full Text PDFFront Microbiol
January 2025
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
The interactions between sugar maple (, Marshall) and its microbial communities are important for tree fitness, growth, and establishment. Despite recent progress in our understanding of the rhizosphere and phyllosphere microbial communities of sugar maple, many outstanding knowledge gaps remain. This review delves into the relationships between sugar maple and its microbes, as climate change alters plant species distributions.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Laboratorio de Ecología del Desierto, Departamento de Biología, Universidad de La Serena, La Serena, Chile.
The symbiosis between mycorrhizae fungi and plant roots is essential for plant establishment in nearly all terrestrial ecosystems. However, the role of mycorrhizal colonization (colM) in shaping root ecological strategies remains poorly understood. Emerging research identifies colM as a key trait influencing the multidimensional covariation of root traits within the Root Economic Space (RES), where a 'collaboration gradient' is proposed.
View Article and Find Full Text PDFSci Total Environ
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China. Electronic address:
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Agriculture, Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras, PB, Brazil.
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!