AI Article Synopsis

Article Abstract

Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing.Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development.Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1.Thus, molecular motors critically influence cell length sensing and growth control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389498PMC
http://dx.doi.org/10.1016/j.celrep.2012.05.013DOI Listing

Publication Analysis

Top Keywords

dynein heavy
12
molecular motors
8
cell length
8
sensory neurons
8
heavy chain
8
length
5
motor-driven mechanism
4
mechanism cell-length
4
cell-length sensing
4
sensing size
4

Similar Publications

Favorable response to ketogenic diet therapy in a patient with -related epilepsy.

Epilepsy Behav Rep

March 2025

Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States.

Dynein Cytoplasmic 1 Heavy chain 1 (-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments.

View Article and Find Full Text PDF

Impact of DNAH3 Deficiency on Sperm Energy Metabolism and Motility Leading to Asthenozoospermia.

Biol Reprod

January 2025

Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

Asthenozoospermia, a prevalent contributor to male infertility, exhibits a multifaceted pathogenesis. This study identified a significant downregulation in sperm dynein heavy chain 3 (DNAH3) protein levels in individuals with asthenozoospermia. To elucidate the role of DNAH3 in asthenozoospermia, we constructed Dnah3-knockout (KO) mice, which exhibited asthenozoospermia and sterility.

View Article and Find Full Text PDF

Engineering Synthetic Myosin Filaments Using DNA Nanotubes.

Methods Mol Biol

December 2024

Molecular, Cellular, Developmental Biology and Genetics Program, University of Minnesota, Minneapolis, MN, USA.

Throughout the cell, motor proteins work together to drive numerous molecular processes and functions. For example, ensembles of myosin motors collectively transport vesicles and organelles, maintain membrane homeostasis, and drive muscle contraction. Studying these motors in groups has become increasingly important with work demonstrating the emergence of ensemble behavior distinct from individual motor behavior.

View Article and Find Full Text PDF

Background: Pathogenic variants in DYNC1H1, which encodes the cytoplasmic dynein 1 heavy chain 1, have been linked to a wide range of neurological syndromes.

Methods: We analyzed clinical data, video-electroencephalography, neuroimaging features, and genetic results in four patients with pathogenic variants in this gene.

Results: A comprehensive description of distinct neuroimaging and neurophysiological hallmarks that can aid in the recognition of these conditions is provided.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!