Sinorhizobium meliloti can live as a soil saprophyte and can engage in a nitrogen-fixing symbiosis with plant roots. To succeed in such diverse environments, the bacteria must continually adjust gene expression. Transcriptional plasticity in eubacteria is often mediated by alternative sigma (σ) factors interacting with core RNA polymerase. The S. meliloti genome encodes 14 of these alternative σ factors, including two putative RpoH ("heat shock") σ factors. We used custom Affymetrix symbiosis chips to characterize the global transcriptional response of S. meliloti rpoH1, rpoH2, and rpoH1 rpoH2 mutants during heat shock and stationary-phase growth. Under these conditions, expression of over 300 genes is dependent on rpoH1 and rpoH2. We mapped transcript start sites of 69 rpoH-dependent genes using 5' RACE (5' rapid amplification of cDNA ends), which allowed us to determine putative RpoH1-dependent, RpoH2-dependent, and dual-promoter (RpoH1- and RpoH2-dependent) consensus sequences that were each used to search the genome for other potential direct targets of RpoH. The inferred S. meliloti RpoH promoter consensus sequences share features of Escherichia coli RpoH promoters but lack extended -10 motifs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3430346PMC
http://dx.doi.org/10.1128/JB.00449-12DOI Listing

Publication Analysis

Top Keywords

rpoh1 rpoh2
12
sigma factors
8
transcriptional plasticity
8
consensus sequences
8
dual rpoh
4
rpoh sigma
4
factors
4
factors transcriptional
4
plasticity symbiotic
4
symbiotic bacterium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!