Systemic lupus erythematosus is considered a prototype of systemic autoimmune diseases; however, despite considerable advances in recent years in the understanding of basic mechanisms in immunology, little progress has been made in elucidating the etiology and pathogenesis of this disease. This even holds for inbred mice, such as the lupus-prone New Zealand Black/New Zealand White F(1) mice, which are all genetically programmed to develop lupus at a predetermined age. This frustrating state of affairs calls for a fundamental change in our scientific thinking and the opening of new directions in lupus research. In this study, we suggest that intrinsic B cell tolerance mechanisms are not grossly impaired in lupus-prone mice, but that an unusually strong positive selection event recruits a small number of autoreactive B cells to the germinal centers. This event could be facilitated by nucleic acid-protein complexes that are created by somatic changes in the susceptible animal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396433 | PMC |
http://dx.doi.org/10.4049/jimmunol.1200848 | DOI Listing |
Background: Accumulating evidence suggests that the presynaptic protein α-synuclein (α-syn), is involved in the pathophysiology of AD and elevated in the cerebrospinal fluid (CSF). The role of Natural Killer (NK) cells of the innate immune system in AD has largely been overlooked. In a murine model, depletion of NK cells augmented the accumulation of pathological α-syn.
View Article and Find Full Text PDFBackground: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.
View Article and Find Full Text PDFBackground: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.
View Article and Find Full Text PDFBackground: Lomecel-B is a novel cell-based therapy with potential to demonstrate clinical benefit on Alzheimer's disease (AD) and its progression. Here we present the results of a phase 2a proof-of-concept trial (n = 49) to further define the potential of Lomecel-B in patients with mild AD dementia.
Methods: This double-blind, randomized, placebo-controlled 45-week trial (ClinicalTrials.
Haematologica
January 2025
Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati OH; University of Cincinnati College of Medicine, Cincinnati OH; Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati OH.
Over the past 40 years, the introduction and refinement of hydroxyurea therapy has led to remarkable progress for the care of individuals with sickle cell anemia (SCA). From initial small proof-of-principle studies to multi-center Phase 3 controlled clinical trials and then numerous open-label studies, the consistent benefits of once-daily oral hydroxyurea have been demonstrated across the lifespan. Elevated fetal hemoglobin (HbF) serves as the most important treatment response, as HbF delays sickle hemoglobin polymerization and reduces erythrocyte sickling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!