Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/RES.0b013e3182635cbf | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFThe intricate development and functionality of the mammalian heart are influenced by the heterogeneous nature of cardiomyocytes (CMs). In this study, single-cell and spatial transcriptomics were utilized to analyze cells from neonatal mouse hearts, resulting in a comprehensive atlas delineating the transcriptional profiles of distinct CM subsets. A continuum of maturation states was elucidated, emphasizing a progressive developmental trajectory rather than discrete stages.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
J Mol Cell Cardiol Plus
September 2024
Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!