Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We performed electrical resistivity ρ, magnetic susceptibility χ, specific heat C and electron diffraction measurements on single-crystalline samples of PrT2Zn20 (T = Ru, Rh and Ir). The three compounds show the Van Vleck paramagnetic behavior, indicating the nonmagnetic crystalline electric field (CEF) ground states. A Schottky-type peak appears at around 14 K, irrespective of the T element, which can be moderately reproduced by a doublet–triplet model. For T = Ru, a structural transition occurs at Ts = 138 K, below which no phase transition appears down to 0.04 K. On the other hand, for T = Ir, antiferroquadrupole (AFQ) ordering arising from the nonmagnetic Γ3 doublet takes place at TQ = 0.11 K. For T = Rh, despite a structural transition between 170 and 470 K, the CEF ground state is still the non-Kramers Γ3 doublet. However, no phase transition due to the Γ3 doublet was observed even down to 0.1 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/24/29/294207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!