In this work, a method for the determination of trace nitrotyrosine (NO(2)Tyr) and tyrosine (Tyr) in Arabidopsis thaliana cell cultures is proposed. Due to the complexity of the resulting extracts after protein precipitation and enzymatic digestion and the strong electrospray signal suppression displayed in the detection of both Tyr and NO(2)Tyr from raw A. thaliana cell culture extracts, a straightforward sample cleanup step was proposed. It was based on the use of mixed-mode solid-phase extraction (SPE) using MCX-type cartridges (Strata™-X-C), prior to identification and quantitation using fast liquid chromatography-electrospray time-of-flight mass spectrometry. Unambiguous confirmation of both amino acids was accomplished with accurate mass measurements (with errors lower than 2 ppm) of each protonated molecule along with a characteristic fragment ion for each species. Recovery studies were accomplished to evaluate the performance of the SPE sample preparation step obtaining average recoveries in the range 92-101%. Limit of quantitation obtained for NO(2)Tyr in A. thaliana extracts was 3 nmol L(-1). Finally, the proposed method was applied to evaluate stress conditions of the plant upon different concentrations of peroxynitrite, a protein-nitrating compound, which induces the nitration of Tyr at the nanomolar range. Detection and confirmation of the compounds demonstrated the usefulness of the proposed approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-012-6220-3 | DOI Listing |
Sci Data
December 2024
Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.
View Article and Find Full Text PDFNew Phytol
December 2024
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.
View Article and Find Full Text PDFEvodevo
December 2024
Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China.
Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!