Lens epithelium-derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection. LEDGF is constitutively associated with chromatin through its Pro-Trp-Trp-Pro (PWWP) domain that binds preferentially to epigenetic methyl-lysine histone markers characteristic of active transcription units. LEDGF binds CtIP in a DNA damage-dependent manner, thereby enhancing its tethering to the active chromatin and facilitating its access to DNA DSBs. These data highlight the role of PWWP-domain proteins in DNA repair and provide a molecular explanation for the antiapoptotic and cancer cell survival-activities of LEDGF.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsmb.2314DOI Listing

Publication Analysis

Top Keywords

dna-end resection
8
homologous recombination
8
active transcription
8
transcription units
8
units ledgf
8
ctip dna
8
dna dsbs
8
ledgf
7
dna
5
ledgf p75
4

Similar Publications

The CRISPR/Cas technology of targeted genome editing made it possible to carry out genetic engineering manipulations with eukaryotic genomes with a high efficiency. Targeted induction of site-specific DNA breaks is one of the key stages of the technology. The cell repairs the breaks via one of the two pathways, nonhomologous end joining (NHEJ) and homology-driven repair (HDR).

View Article and Find Full Text PDF

Single-Molecule Visualization of BLM-DNA2-Mediated DNA End Resection Using DNA Curtains.

Methods Mol Biol

December 2024

Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.

Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.

View Article and Find Full Text PDF

Background: The expansion of CAG/CTG repeats in functionally unrelated genes is a causative factor in many inherited neurodegenerative disorders, including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1). Despite many years of research, the mechanism responsible for repeat instability is unknown, and recent findings indicate the key role of DNA repair in this process. The repair of DSBs induced by genome editing tools results in the shortening of long CAG/CTG repeats in yeast models.

View Article and Find Full Text PDF

The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M.

View Article and Find Full Text PDF
Article Synopsis
  • Double-strand breaks (DSBs) are harmful DNA lesions that threaten genomic stability, requiring efficient repair processes like nonhomologous end-joining (NHEJ) and homology-directed repair (HDR).
  • The study investigates the roles of two proteins, DmCtIP and DmRif1, in Drosophila melanogaster (fruit flies) and finds that both are important for DSB repair, but with DmCtIP being the more critical protein.
  • Experimental results show that when both proteins are absent, the DSB repair mechanisms (HR and SSA) are significantly impaired, indicating that DmCtIP leads the repair process rather than working redundantly with DmRif1.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!