Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5 nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in(2) memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat3371 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.
Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, TN 37830, USA.
Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Physics, Pukyong National University, Busan 48513, Korea.
Altermagnetism is a new class of material with zero net magnetization, but having a nonrelativistic spin-split band structure. Here, we investigate the multifunctional properties of the hexagonal wurtzite MnO (-MnO). -MnO has a direct band gap of 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Energy, School of Optoelectronic Science and Engineering, School of Biology and Basic Medical Sciences, School of Physical Science and Technology, Soochow University, Suzhou, 215000, P. R. China.
Human hearing cannot sensitively detect sounds below 100 Hz, which can affect the physical well-being and lead to dizziness, headaches, and nausea. Piezoelectric acoustic sensors still lack sensitivity to low-frequency sounds owing to the low piezoelectric coefficient or high elastic modulus of materials. The low elastic modulus and substantial piezoelectric coefficient of molecular ferroelectric materials make them excellent candidates for acoustic sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!