Inflammatory bowel disease (IBD) is a chronic illness caused by complex interactions between genetic and environmental factors that propagate inflammation and damage to the gastrointestinal epithelium. This state of chronic inflammation increases the risk for development of colitis-associated cancer in IBD patients. Thus, the development of targeted therapeutics that can disrupt the cycle of inflammation and epithelial injury is highly attractive. However, such biological therapies, including those targeting epidermal growth factor receptor pathways, pose a risk of increasing cancer rates. Using two mouse models of colitis-associated cancer, we found that epidermal growth factor receptor inactivation accelerated the incidence and progression of colorectal tumors. By modulating inflammation and epithelial regeneration, epidermal growth factor receptor optimized the response to chronic inflammation and limited subsequent tumorigenesis. These findings provide important insights into the pathogenesis of colitis-associated cancer and suggest that epidermal growth factor-based therapies for IBD may reduce long-term cancer risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408743 | PMC |
http://dx.doi.org/10.1172/JCI62888 | DOI Listing |
RSC Med Chem
January 2025
Department of Chemistry, The State University of New York at Buffalo Natural Sciences Complex Buffalo NY 14260 USA
Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Department of Cardiology, Gazi University Faculty of Medicine, 06560 Ankara, Turkey.
Background: Hypertension-mediated organ damage (HMOD) is a critical complication of hypertension that can present with cardiac, retinal, and renal manifestations and affect patient outcomes. Serum signal peptide, CUB (complement C1r/C1s, Uegf, and Bmp1) domain, and epidermal growth factor-like domain-containing protein 1 (SCUBE-1), a novel biomarker implicated in vascular pathology, shows promise for detecting HMOD. This study aims to explore the relation between SCUBE-1 levels and HMOD in hypertensive patients.
View Article and Find Full Text PDFCureus
December 2024
Department of Medical Affairs, Dr. Reddy's Laboratories, Hyderabad, IND.
This research aims to optimize adjuvant ovarian function suppression (OFS) for premenopausal Indian women with hormone receptor-positive (HR+) /human epidermal growth factor receptor 2-negative (HER2-) early breast cancer (eBC). To address specific challenges identified in clinical practice, a comprehensive questionnaire consisting of 21 statements was developed. These statements were reviewed and validated by a scientific committee, ensuring their accuracy and relevance to the study's objectives.
View Article and Find Full Text PDFCureus
December 2024
Oncology Department, Faculty of Medicine, Jagiellonian University Medical College, Cracow, POL.
Gastric cancer is a common type of gastrointestinal tract malignancy. It is characterized by a poor prognosis - median survival for metastatic disease is about 12 months. A small percentage of gastric cancer is characterized by high sensitivity to systemic treatment, resulting in deep and durable responses.
View Article and Find Full Text PDFJ Multidiscip Healthc
January 2025
Department of Ultrasound, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, 222004, People's Republic of China.
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression in tumor cells. TNBC represents about 15% to 20% of all breast cancers and is aggressive and highly malignant. Currently, TNBC diagnosis primarily depends on pathological examination, while treatment efficacy is assessed through imaging, biomarker detection, pathological evaluation, and clinical symptom improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!