A highly sensitive oxygen (O(2)) sensing mechanism is critical for the survival of all vertebrate species. In fish, this requirement is fullfilled by the neuroepithelial cells (NECs) of the gill. NECs are neurotransmitter-containing chemosensory cells that are diffusely distributed within a thin epithelial layer of the filaments and respiratory lamellae of all gill arches, and are innervated by afferent fibers from the central nervous system. In acute cell culture, NECs respond immediately, and in a dose-dependent manner, to acute changes in O(2) tension. Thus, hypoxic stimulation of gill NECs appears to initiate the production of adaptive, cardiorespiratory reflexes that contribute to the maintenance of O(2) uptake in order to meet metabolic demands. This review covers the current evidence for the status of NECs as the primary peripheral O(2) sensors in fish. We have included an overview of the phylogeny of O(2) sensing structures among vertebrate groups, and morphological and physiological evidence for the importance of NECs in O(2) sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2012.06.024 | DOI Listing |
Clin Neuropharmacol
January 2025
Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China.
Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.
View Article and Find Full Text PDFElife
January 2025
Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, United States.
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.
Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.
View Article and Find Full Text PDFClin Neurol Neurosurg
December 2024
Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:
Background: The complex structure and function of the cerebrum make it a key focus in neuroscience research. It develops from telencephalic vesicles through processes such as cell growth, division, and migration from the neuroepithelium's ventricular matrix, forming the six-layered isocortex or neocortex. Multipotent neuroepithelial cells give rise to both neuronal and glial precursors, which populate the cerebral cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!