Recent studies demonstrated that mature atrocytes have the capacity for de-differentiating into neural stem/progenitor cells (NSPCs) in vitro and in vivo. However, it is still unknown what signals endow astroglial cells with a de-differentiation potential. Furthermore, the signaling molecules and underlying mechanism that confer astrocytes with the competence of NSPC phenotypes have not been completely elucidated. Here, we found that sonic hedgehog (Shh) production in astrocytes following mechanical injury was significantly elevated, and that incubation of astrocyes with the injured astrocyte conditioned medium (ACM) causes astrocytes to gradually lose their immunophenotypical profiles, and acquire NSPC characteristics, as demonstrated by down-regulation of typical astrocytic markers (GFAP and S100) and up-regulation of markers that are generally expressed in NSCs, (nestin, Sox2, and CD133). ACM treated astrocytes exhibit self-renewal capacity and multipotency similar to NSPCs. Concomitantly, in addition to Ptc, there was a significant up-regulation of the Shh downstream signal components Gli2 and Cyclin D1 which are involved in cell proliferation, dramatic changes in cell morphology, and the disruption of cell-cycle G1 arrest. Conversely, the depletion of Shh by administration of its neutralizing antibody (Shh n-Ab) effectively inhibited the de-differentiation process. Strikingly, Shh alone had little effect on astrocyte de-differentiation to NSPCs. These data above suggest that Shh is a key instructive molecule while other molecules secreted from insulted astrocytes may synergistically promote the de-differentiation event.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2012.06.002DOI Listing

Publication Analysis

Top Keywords

sonic hedgehog
8
astrocyte de-differentiation
8
astrocytes
6
shh
6
de-differentiation
5
hedgehog released
4
released scratch-injured
4
scratch-injured astrocytes
4
astrocytes key
4
key signal
4

Similar Publications

High cellular plasticity state of medulloblastoma local recurrence and distant dissemination.

Cell Rep Med

January 2025

Beijing Neurosurgical Institute, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China. Electronic address:

Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets.

View Article and Find Full Text PDF

Cyclopamine inhibits corneal neovascularization and fibrosis by alleviating inflammatory macrophage recruitment and endothelial cell activation.

Int Immunopharmacol

January 2025

Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030 China. Electronic address:

Purpose: To explore the function of cyclopamine in corneal neovascularization and subsequent fibrosis after cornea alkali-burn injury.

Methods: In vivo, mice cornea were injured by NaOH, and then treated with cyclopamine, clodronate liposomes (CLO-LPS), and vehicle of cyclopamine separately by subconjunctival injections. Clinical features were observed and pathological characteristics were examined.

View Article and Find Full Text PDF

Sonic Hedgehog signaling regulates the optimal differentiation pace from early-stage mesoderm to cardiogenic mesoderm in mice.

Dev Growth Differ

January 2025

Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.

Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.

View Article and Find Full Text PDF

Aging is a risk factor for several chronic conditions, including intervertebral disc degeneration and associated back pain. Disc pathologies include loss of reticular-shaped nucleus pulposus cells, disorganization of annulus fibrosus lamellae, reduced disc height, and increased disc bulging. Sonic hedgehog, cytokeratin 19, and extracellular matrix proteins are markers of healthy disc.

View Article and Find Full Text PDF

Background: Neuroinflammatory responses are strongly associated with the pathogenesis of progressive neurodegenerative conditions and mood disorders. Modulating microglial activation is a potential strategy for developing protective treatments for central nervous system (CNS)-related diseases. Fibrates, widely used in clinical practice as cholesterol-lowering medications, exhibit numerous biological activities, such as anticancer and antiinflammatory activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!