In K+ channels, rearrangements of the pore outer vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggests these movements to be modest in magnitude. In this study, we show that under physiological conditions, the KcsA outer vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+ -bound Y82C-KcsA in the closed state, together with electron paramagnetic resonance distance measurements in the KcsA outer vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846092 | PMC |
http://dx.doi.org/10.1016/j.str.2012.03.027 | DOI Listing |
J Craniofac Surg
October 2024
Department of Plastic Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
High-velocity lateral impacts to the nose sometimes cause nasal buckle-out fractures with a trapdoor buckle-out segment displaced outwards. Prolonged immobilization of a reduced buckle-out segment at risk for outward redisplacement remains challenging. Here we introduce a novel method of intranasal outer cortex splinting with a Kirshner (K)-wire to reinforce the reduced state and prevent outward re-displacement of the buckle-out segment.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China. Electronic address:
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.
View Article and Find Full Text PDFSci Rep
November 2024
Research and Development, MED-EL, Innsbruck, Austria.
Estimation of cochlear length is gaining attention in the field of cochlear implants (CIs), mainly for selecting of CI electrode lengths. The currently available tools to estimate the cochlear duct length (CDL) are only valid for normal inner anatomy. However, inner ear malformation (IEM) types are associated with different degrees of cystic apices, limiting the application of CDL equations of normal anatomy inner ear.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
A broad chemical genetics screen in to identify inhibitors of established or previously untapped targets for therapeutic development yielded compounds (BRD-8000.3 and BRD-9327) that inhibit the essential efflux pump EfpA. To understand the mechanisms of inhibition by these compounds, we determined the structures of EfpA with inhibitors bound at 2.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
August 2024
Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan 250022, China.
To summarize the HRCT and MRI appearances of stapical footplate fistula related to inner ear malformation (SFF-Re-IEM). The HRCT and MRI materials of 48 cases (53 ears) SFF-Re-IEM were retrospectively analyzed. Among them, 25 SFF-Re-IEM ears were confirmed by surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!