Intestinal gluconeogenesis is involved in the control of food intake. We show that mu-opioid receptors (MORs) present in nerves in the portal vein walls respond to peptides to regulate a gut-brain neural circuit that controls intestinal gluconeogenesis and satiety. In vitro, peptides and protein digests behave as MOR antagonists in competition experiments. In vivo, they stimulate MOR-dependent induction of intestinal gluconeogenesis via activation of brain areas receiving inputs from gastrointestinal ascending nerves. MOR-knockout mice do not carry out intestinal gluconeogenesis in response to peptides and are insensitive to the satiety effect induced by protein-enriched diets. Portal infusions of MOR modulators have no effect on food intake in mice deficient for intestinal gluconeogenesis. Thus, the regulation of portal MORs by peptides triggering signals to and from the brain to induce intestinal gluconeogenesis are links in the satiety phenomenon associated with alimentary protein assimilation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2012.05.039DOI Listing

Publication Analysis

Top Keywords

intestinal gluconeogenesis
24
food intake
12
mu-opioid receptors
8
gut-brain neural
8
intestinal
6
gluconeogenesis
6
receptors dietary
4
dietary protein
4
protein stimulate
4
stimulate gut-brain
4

Similar Publications

The Gut Microbiota-Related Antihyperglycemic Effect of Metformin.

Pharmaceuticals (Basel)

January 2025

Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.

It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications.

View Article and Find Full Text PDF

Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.

Am J Physiol Gastrointest Liver Physiol

January 2025

Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.

Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.

View Article and Find Full Text PDF

The immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.

View Article and Find Full Text PDF

The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.

Physiol Rep

January 2025

Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.

Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.

View Article and Find Full Text PDF

Correlation analysis of the impact of juvenile on gut microbiota and transcriptome in mice.

Microbiol Spectr

December 2024

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.

Unlabelled: remains a non-negligible global zoonosis, imposing serious socio-economic burdens in endemic regions. The interplay between gut microbiota and the host transcriptome is crucial for maintaining health; however, the impact of juvenile infection on these factors is still poorly understood. This study aimed to investigate their relationship and potential pathogenic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!