Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO(2) nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200nm grew instantaneously upon lithiation of a single-crystalline SnO(2) nanowire at large current density (j>20A/cm(2)), which suppressed formation of the Li(x)Sn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j≈2400A/cm(2)) the pristine SnO(2) nanowires resulted in melting of the SnO(2) nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO(2) lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO(2) nanowires coated with an ultra-thin solid electrolyte LiAlSiO(x) layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li(+)-conducting LiAlSiO(x) layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO(2) nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2012.01.016DOI Listing

Publication Analysis

Top Keywords

sno2 nanowires
24
crystal growth
8
lithiation delithiation
8
delithiation processes
8
sno2
8
processes sno2
8
lithium ion
8
agglomeration atoms
8
particle growth
8
lialsiox layer
8

Similar Publications

Pd-Decorated SnO Nanofilm Integrated on Silicon Nanowires for Enhanced Hydrogen Sensing.

Sensors (Basel)

January 2025

Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China.

The development of reliable, highly sensitive hydrogen sensors is crucial for the safe implementation of hydrogen-based energy systems. This paper proposes a novel way to enhance the performance of hydrogen sensors through integrating Pd-SnO nanofilms on the substrate with silicon nanowires (SiNWs). The samples were fabricated via a simple and cost-effective process, mainly consisting of metal-assisted chemical etching (MaCE) and electron beam evaporation.

View Article and Find Full Text PDF

Effect of the Chemical Structure of a Self-Assembled Monolayer on the Gas-Sensing Behavior of SnO Nanowires.

ACS Sens

February 2025

Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.

In this study, detailed investigations of the selective sensing capability of semiconducting metal oxide (SMO)-based gas sensors with self-assembled monolayer (SAM) functionalization were conducted. The selective gas-sensing behavior was improved by employing a simple and straightforward postmodification technique using functional SAM molecules. The chemical structure of the SAM molecules promoted interaction between the gas and SAM molecules, providing a gas selective sensing of SnO nanowires (NWs).

View Article and Find Full Text PDF

Excitation-Power-Dependent Color Tuning in a Single Sn-Doped CdS Nanowire.

Molecules

November 2024

State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.

Multicolor emission and dynamic color tuning with large spectral range are challenging to realize but critically important in many areas of technology and daily life, such as general lighting, display, multicolor detection and multi-band communication. Herein, we report an excitation-power-dependent color-tuning emission from an individual Sn-doped CdS nanowire with a large spectral range and continuous color tuning. Its photoluminescence (PL) spectrum shows a broad trap-state emission band out of Sn dopants, which is superposed by whispering-gallery (WG) microcavity due to the nanostructure size and its structure, besides the CdS band-edge emission.

View Article and Find Full Text PDF

Metal oxide core-shell fibrous nanostructures are promising gas-sensitive materials for the detection of a wide variety of both reducing and oxidizing gases. In these structures, two dissimilar materials with different work functions are brought into contact to form a coaxial heterojunction. The influence of the shell material on the transportation of the electric charge carriers along these structures is still not very well understood.

View Article and Find Full Text PDF

Imaging of Volatile Organic Compounds Using a Single Nanowire-Based Electronic Nose for Future Biomedical Applications.

ACS Sens

October 2024

Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

This study introduces an array of semiconductor oxide single nanowires fabricated using advanced semiconductor processing techniques, including electron beam lithography and thin-film deposition, which is well-suited for large-scale nanowire integration. A four-channel nanowire array consisting of tin oxide (SnO), indium oxide (InO), ferric oxide (FeO), and titanium oxide (TiO) was developed. As a proof of concept, we converted the response curves of the sensor array to heat maps, enabling comprehensive feature representation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!