Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are difficult to resolve because of the high degree of overlap in compound vapor pressures, boiling points, and mass spectral fragmentation patterns. The objective of this research was to improve the separation of complex PAH mixtures (including 97 different parent, alkyl-, nitro-, oxy-, thio-, chloro-, bromo-, and high molecular weight PAHs) using GC × GC/ToF-MS by maximizing the orthogonality of different GC column combinations and improving the separation of PAHs from the sample matrix interferences, including unresolved complex mixtures (UCM). Four different combinations of nonpolar, polar, liquid crystal, and nanostationary phase columns were tested. Each column combination was optimized and evaluated for orthogonality using a method based on conditional entropy that considers the quantitative peak distribution in the entire 2D space. Finally, an atmospheric particulate matter with diameter <2.5 μm (PM(2.5)) sample from Beijing, China, a soil sample from St. Maries Creosote Superfund Site, and a sediment sample from the Portland Harbor Superfund Site were analyzed for complex mixtures of PAHs. The highest chromatographic resolution, lowest synentropy, highest orthogonality, and lowest interference from UCM were achieved using a 10 m × 0.15 mm × 0.10 μm LC-50 liquid crystal column in the first dimension and a 1.2 m × 0.10 mm × 0.10 μm NSP-35 nanostationary phase column in the second dimension. In addition, the use of this column combination in GC × GC/ToF-MS resulted in significantly shorter analysis times (176 min) for complex PAH mixtures compared to 1D GC/MS (257 min), as well as potentially reduced sample preparation time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423902 | PMC |
http://dx.doi.org/10.1021/es301790h | DOI Listing |
Commun Biol
January 2025
Faculty of Science, Ibaraki University, Mito, Japan.
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.
View Article and Find Full Text PDFSci Rep
January 2025
Research Innovation and Entrepreneurship Unit, University of Buraimi, 512, Buraimi, Oman.
Skin diseases impact millions of people around the world and pose a severe risk to public health. These diseases have a wide range of effects on the skin's structure, functionality, and appearance. Identifying and predicting skin diseases are laborious processes that require a complete physical examination, a review of the patient's medical history, and proper laboratory diagnostic testing.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96, Göteborg, Sweden.
The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shanghai Applied Radiation Institute, State Key Lab. Advanced Special Steel, Shanghai University, Shanghai 200444, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Electronic address:
The clogging of sieving pores due to the complex sewage system of mixed molecules and nanoparticles of different scales is a difficulty in the membrane-based separation process. When the holes are reduced to the point where they can repel small molecules in the contaminants, large-molecule contaminants can adsorb to the holes and decrease the permeability. A similar question remains in new promising graphene oxide (GO) membranes.
View Article and Find Full Text PDFBiomaterials
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!