The association between H3K4me3 and antisense transcription.

Genomics Proteomics Bioinformatics

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China.

Published: April 2012

AI Article Synopsis

  • H3K4me3, traditionally associated with transcription activation at gene promoters, is also enriched at the 3' ends of many actively transcribed genes in mouse cerebrum and testis, revealing a novel modification termed 3'-H3K4me3.
  • This modification correlates with the initiation and expression of antisense transcription, suggesting that it plays a role in regulating this process.
  • Additionally, the presence of 3'-H3K4me3 is conserved across various species, indicating it may function as a universal epigenetic feature that could act as a promoter for antisense transcription in eukaryotes.

Article Abstract

Histone H3 lysine 4 trimethylation (H3K4me3) is well known to occur in the promoter region of genes for transcription activation. However, when investigating the H3K4me3 profiles in the mouse cerebrum and testis, we discovered that H3K4me3 also has a significant enrichment at the 3' end of actively transcribed (sense) genes, named as 3'-H3K4me3. 3'-H3K4me3 is associated with ~15% of protein-coding genes in both tissues. In addition, we examined the transcriptional initiation signals including RNA polymerase II (RNAPII) binding sites and 5'-CAGE-tag that marks transcriptional start sites. Interestingly, we found that 3'-H3K4me3 is associated with the initiation of antisense transcription. Furthermore, 3'-H3K4me3 modification levels correlate positively with the antisense expression levels of the associated sense genes, implying that 3'-H3K4me3 is involved in the activation of antisense transcription. Taken together, our findings suggest that H3K4me3 may be involved in the regulation of antisense transcription that initiates from the 3' end of sense genes. In addition, a positive correlation was also observed between the expression of antisense and the associated sense genes with 3'-H3K4me3 modification. More importantly, we observed the 3'-H3K4me3 enrichment among genes in human, fruitfly and Arabidopsis, and found that the sequences of 3'-H3K4me3-marked regions are highly conserved and essentially indistinguishable from known promoters in vertebrate. Therefore, we speculate that these 3'-H3K4me3-marked regions may serve as potential promoters for antisense transcription and 3'-H3K4me3 appear to be a universal epigenetic feature in eukaryotes. Our results provide a novel insight into the epigenetic roles of H3K4me3 and the regulatory mechanism of antisense transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054153PMC
http://dx.doi.org/10.1016/j.gpb.2012.05.001DOI Listing

Publication Analysis

Top Keywords

antisense transcription
24
sense genes
16
antisense
8
3'-h3k4me3
8
3'-h3k4me3 associated
8
transcription 3'-h3k4me3
8
3'-h3k4me3 modification
8
associated sense
8
3'-h3k4me3-marked regions
8
transcription
7

Similar Publications

Clinical diagnostic value and potential regulatory mechanisms of lncRNA NOP14-AS1 in chronic kidney disease.

Nucleosides Nucleotides Nucleic Acids

January 2025

Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.

In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included.

View Article and Find Full Text PDF

Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes.

Viruses

December 2024

Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.

The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.

View Article and Find Full Text PDF

Previous RNA profiling studies revealed co-expression of overlapping sense/antisense (s/a) transcripts in pro- and eukaryotic organisms. Functional analyses in yeast have shown that certain s/a mRNA/mRNA and mRNA/lncRNA pairs form stable double-stranded RNAs (dsRNAs) that affect transcript stability. Little is known, however, about the genome-wide prevalence of dsRNA formation and its potential functional implications during growth and development in diploid budding yeast.

View Article and Find Full Text PDF

Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.

View Article and Find Full Text PDF

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!