Pathogen-activated and damage-associated molecular patterns activate the inflammasome in macrophages. We report that mouse macrophages release IL-1β while co-incubated with pro-B (Ba/F3) cells dying, as a result of IL-3 withdrawal, by apoptosis with autophagy, but not when they are co-incubated with living, apoptotic, necrotic or necrostatin-1 treated cells. NALP3-deficient macrophages display reduced IL-1β secretion, which is also inhibited in macrophages deficient in caspase-1 or pre-treated with its inhibitor. This finding demonstrates that the inflammasome is activated during phagocytosis of dying autophagic cells. We show that activation of NALP3 depends on phagocytosis of dying cells, ATP release through pannexin-1 channels of dying autophagic cells, P(2)X(7) purinergic receptor activation, and on consequent potassium efflux. Dying autophagic Ba/F3 cells injected intraperitoneally in mice recruit neutrophils and thereby induce acute inflammation. These findings demonstrate that NALP3 performs key upstream functions in inflammasome activation in mouse macrophages engulfing dying autophagic cells, and that these functions lead to pro-inflammatory responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386917PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040069PLOS

Publication Analysis

Top Keywords

dying autophagic
20
autophagic cells
16
atp release
8
cells
8
inflammasome activation
8
mouse macrophages
8
ba/f3 cells
8
phagocytosis dying
8
dying
7
macrophages
6

Similar Publications

We report the identification of an interesting mode of action by sorafenib (SF) (Nexavar) in triple-negative breast adenocarcinoma MDA-MB-231 cells. The dying cells presented features of apoptosis, such as externalization of phosphatidylserine and cleaved caspase-3, and autophagy-mediated cell death, such as formation of autophagosomes and autolysosomes, the overexpression of LC3-II, and the presence of LAMP1-positive vacuoles, while displaying insufficient autophagic flux. Components of endoplasmic reticulum stress (ER stress; PERK and CHOP) and of necroptosis (p-MLKL) were also elevated considerably.

View Article and Find Full Text PDF

Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na/K-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI.

View Article and Find Full Text PDF

Engineering mitochondrial uncoupler synergistic photodynamic nanoplatform to harness immunostimulatory pro-death autophagy/mitophagy.

Biomaterials

October 2022

School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021 China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, China. Electronic address:

Generally, autophagy/mitophagy, as a highly conserved lysosomal-based catabolic pathway, compromises the photodynamic therapy (PDT) efficiency by increasing the adaptation of tumor cells toward reactive oxygen species (ROS)-triggered protein damages and mitochondrial destruction. On the other hand, excessively activated autophagy/mitophagy cascades can provoke autophagic cell death and promote the endogenous antigens release of dying cells, thus playing a vital role in initiating the antitumor immune responses. To harness the exquisite immunomodulating effect of pro-death autophagy/mitophagy, we rationally constructed a MnO shell-coated multifunctional porphyrinic metal-organic framework (MOF) to load carbonyl cyanide 3-chlorophenylhydrazone (CCCP).

View Article and Find Full Text PDF

Autophagy induction by IGF1R inhibition with picropodophyllin and linsitinib.

Autophagy

August 2021

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France.

Induction of macroautophagy (hereafter termed autophagy) is a strategy to improve the outcome of antineoplastic therapies by facilitating the induction of immunogenic cancer cell death and the consequent immune recognition of malignant cells. We analyzed 65,000 distinct compounds by means of a phenotypic discovery platform for autophagy induction and identified the IGF1R (insulin like growth factor 1 receptor) inhibitor picropodophyllin (PPP) as a potent inducer of autophagic flux. We found that PPP acts on-target, as an inhibitor of the tyrosine kinase activity of IGF1R and enhances the release of adenosine triphosphate, ATP, from stressed and dying cancer cells in vitro, thereby improving the therapeutic efficacy of chemoimmunotherapy in cancer-bearing mice.

View Article and Find Full Text PDF

Crosstalk between oncolytic viruses and autophagy in cancer therapy.

Biomed Pharmacother

February 2021

Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, PR China. Electronic address:

Oncolytic viruses have attracted attention as a promising strategy in cancer therapy owing to their ability to selectively infect and kill tumor cells, without affecting healthy cells. They also exert their anti-tumor effects by releasing immunostimulatory molecules from dying cancer cells. Several regulatory mechanisms, such as autophagy, contribute to the anti-tumor properties of oncolytic viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!