The impact of glial neurotransmitter receptors in vivo is still elusive. In the cerebellum, Bergmann glial (BG) cells express α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) composed exclusively of GluA1 and/or GluA4 subunits. With the use of conditional gene inactivation, we found that the majority of cerebellar GluA1/A4-type AMPARs are expressed in BG cells. In young mice, deletion of BG AMPARs resulted in retraction of glial appendages from Purkinje cell (PC) synapses, increased amplitude and duration of evoked PC currents, and a delayed formation of glutamatergic synapses. In adult mice, AMPAR inactivation also caused retraction of glial processes. The physiological and structural changes were accompanied by behavioral impairments in fine motor coordination. Thus, BG AMPARs are essential to optimize synaptic integration and cerebellar output function throughout life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1221140 | DOI Listing |
IBRO Neurosci Rep
June 2025
Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
Background: Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function.
View Article and Find Full Text PDFNeurosci Bull
November 2024
School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey.
Heat shock proteins (HSPs) are induced in response to stressful stimuli and play an important role in cell repair and protection. This study, using immunohistochemistry, aimed to determine whether HSPs are induced in the cerebellum of rats subjected to hyperthermia during postnatal development (PND). The results showed that unlike HSP27 and HSP70, HSP60 and HSP90 were constitutively expressed in the cerebellum of rats.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065.
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional knockout (KO and cKO, respectively) mouse lines.
View Article and Find Full Text PDFCell Rep
August 2024
Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Academy for Advanced Interdisciplinary Studies, Third Hospital, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!