The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34300 | DOI Listing |
Sci Rep
January 2025
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication.
View Article and Find Full Text PDFKidney Int
February 2025
Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel Switzerland. Electronic address:
BK polyomavirus remains a vexing issue in kidney transplantation. There are no antiviral drugs, and solely reducing immunosuppression is recommended for management. However, evidence from randomized controlled studies lacks defining clearance of BK polyomavirus-DNAemia and/or nephropathy as a primary outcome.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. Electronic address:
Dry wells are neighborhood-scale stormwater infiltration systems increasingly used in drought-prone areas for stormwater capture and groundwater recharge. These systems bypass the low permeability surface soil to maximize infiltration rates. However, hydrophilic contaminants of emerging concern (CECs) in urban runoff pose potential groundwater contamination risks.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Dufulin is an efficient antiviral agent for plants, however, data on its environmental fate, particularly concerning its transformation products (TPs), remain scarce. The TPs formed during abiotic degradation may pose significant environmental risks due to potential toxicity. Therefore, this study systematically investigated the hydrolysis and photolysis kinetics of Dufulin in aqueous solutions across various pH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!