Dosimetric properties of a beam quality-matched 6 MV unflattened photon beam.

J Appl Clin Med Phys

Department of Radiation Oncology, Division of Medical Physics, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242

Published: July 2012

The purpose of this study was to report the characteristics of an equivalent quality unflattened (eqUF) photon beam in clinical implementation and to provide a generalized method to describe unflattened (UF) photon beam profiles. An unflattened photon beam with a beam quality equivalent to the corresponding flat 6 MV photon beam (WF) was obtained by removing the flattening filter from a Siemens ONCOR Avant-Garde linear accelerator and adjusting the photon energy. A method independent from the WF beam profile was presented to describe UF beam profiles and other selected beam characteristics were examined. The short-term beam stability was examined by dynamic beam profiles, recorded every 0.072 s in static and gated delivery, and the long-term stability was evidenced by the five-year clinical quality assurance records. The dose rate was raised fivefold using the eqUF beam. The depth of maximum dose (d(max)) shifted 3 mm deeper, but the percent depth dose beyond d(max) was very similar to that of the WF beam. The surface dose and out-of-field dose were lower, but the penumbra was slightly wider. The variation in head scatter and phantom scatter with changes in field size was smaller; the variation in the profile shape with change in depth was also smaller. The eqUF beam is stable 0.072 s after the beam is turned on, and the five-year beam stability was comparable to that of the WF beam. A fivefold dose rate increase was observed in the eqUF beam with similar beam characteristics to other reported UF beam data except for a deeper dmax and a slightly wider penumbra. The initial and long-term stability of the eqUF beam profile is on parity with the WF beam. The UF beam profile can be described in the generalized method independently without relying on the WF beam profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716519PMC
http://dx.doi.org/10.1120/jacmp.v13i4.3701DOI Listing

Publication Analysis

Top Keywords

beam
25
photon beam
20
beam profile
16
equf beam
16
unflattened photon
12
beam profiles
12
beam beam
12
generalized method
8
beam characteristics
8
beam stability
8

Similar Publications

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.

View Article and Find Full Text PDF

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

Conventional approaches for the structural health monitoring of infrastructures often rely on physical sensors or targets attached to structural members, which require considerable preparation, maintenance, and operational effort, including continuous on-site adjustments. This paper presents an image-driven hybrid structural analysis technique that combines digital image processing (DIP) and regression analysis with a continuum point cloud method (CPCM) built on a particle-based strong formulation. Polynomial regressions capture the boundary shape change due to the structural loading and precisely identify the edge and corner coordinates of the deformed structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!