Linking topological structure and dynamics in ecological networks.

Am Nat

Departamento Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Spain.

Published: August 2012

Interaction networks are basic descriptions of ecological communities and are at the core of community dynamics models. Knowledge of their structure should enable us to understand dynamical properties of ecological communities. However, the relationships between dynamical properties of communities and qualitative descriptors of network structure remain unclear. To improve our understanding of such relationships, we develop a framework based on the concept of strongly connected components, which are key structural components of networks necessary to explain stability properties such as persistence and robustness. We illustrate this framework for the analysis of qualitative empirical food webs and plant-plant interaction networks. Both types of networks exhibit high persistence (on average, 99% and 80% of species, respectively, are expected to persist) and robustness (only 0.2% and 2% of species are expected to disappear following the extinction of a species). Each of the networks is structured as a large group of interconnected species accompanied by much smaller groups that most often consist of a single species. This low-modularity configuration can be explained by a negative modularity-stability relationship. Our results suggest that ecological communities are not typically structured in multispecies compartments and that compartmentalization decreases robustness.

Download full-text PDF

Source
http://dx.doi.org/10.1086/666651DOI Listing

Publication Analysis

Top Keywords

ecological communities
12
interaction networks
8
dynamical properties
8
species expected
8
networks
6
species
5
linking topological
4
topological structure
4
structure dynamics
4
ecological
4

Similar Publications

Analyzing bacterial networks and interactions in skin and gills of Sparus aurata with microalgae-based additive feeding.

Sci Rep

December 2024

Department of Microbiology, Faculty of Sciences, CEI·MAR-International Campus of Excellence in Marine Science, University of Malaga, Málaga, Spain.

The inclusion of microalgae in functional fish diets has a notable impact on the welfare, metabolism and physiology of the organism. The microbial communities associated with the fish are directly influenced by the host's diet, and further understanding the impact on mucosal microbiota is needed. This study aimed to analyze the microbiota associated with the skin and gills of Sparus aurata fed a diet containing 10% microalgae.

View Article and Find Full Text PDF

Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).

View Article and Find Full Text PDF

Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.

View Article and Find Full Text PDF

Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.

Nat Commun

December 2024

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!