Despite the fact that the marine crustacean Artemia salina is extensively used in ecotoxicology, there is still a lack of information about its sensitivity to commonly used chemicals. In the presented study, acute toxicity of 18 commonly used chemicals - including organic solvents, industrial chemicals, metals and inorganic compounds - to A. salina was evaluated. A. salina showed a range of sensitivities to tested chemicals. Regarding all of the investigated organics, phenolic compounds expressed the highest toxicity to A. salina. Nitrite and mercury were the most toxic inorganic substances applied in the study. On the other hand, dimethyl sulfoxide, nitrate and ammonium were the least toxic. The possibility to use A. salina for interspecies correlation was assessed by comparison of sensitivities of different organisms (bacteria, fish, crustacean) to organic compounds. Correlation between various species was observed, especially between A. salina and fish. Due to the strong relation between toxicity and the logarithm of the octanol/water partition coefficient logP(OW,) lipophilicity was found to be the main factor influencing toxicity of the chosen organic compounds. No significant correlation between toxicity to A. salina and physico-chemical parameters of metals was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2012.271 | DOI Listing |
Toxicon
January 2025
Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil.
The venom of Ectatomma brunneum is considered promising for drugs development. Therefore, it is important to evaluate its toxic potential and genetic instability using biological assays. To this end, toxicity assays were performed with Artemia salina, cytotoxicity and genotoxicity with Allium cepa and mutagenicity with Ames.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.
In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.
Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.
Nanotoxicology
January 2025
Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
Titanium dioxide nanoparticles (TiONPs) as an emerging pollutant in aquatic environments can interact with metals reducing or enhancing their toxicity in these environments. This study examined and compared the toxic effects of mercury ions (Hg ions) on immobilization percentage, fatty acid profile, and oxidative stress of nauplii, individually (Hg) and simultaneously in the presence of 0.10 mg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!