Several typical characteristics of prostate tissue have been identified including the ability to accumulate zinc(II). However, this feature of prostate cells is lost during carcinogenesis and, thus, prostate cells are unable to accumulate zinc(II) ions in high levels. Therefore, we can expect that zinc(II) ions can significantly contribute to the progression of tumour disease and to the ability of prostate cell lines to metastasize. In this study, we aimed our attention on determining the expression of Bcl-2, c-Fos, c-Jun, Ki-67, NF-κB and p53 genes in two prostate cell lines, as the 22Rv1 cell line, a model of aggressive partially androgen-sensitive prostate cancer and the PNT1A cell line, a normal prostate cell line model. Moreover, we were interested in the mechanisms through which exposure of these cell lines to zinc(II) ions could influence expression of the above-mentioned genes. We found that zinc(II) ions caused elevated expression of Ki-67, a marker of proliferation, extremely low expression of p53, high expression of Bcl-2 and no changes in the expression of p53. Our experimental data show different effect of zinc(II) ions on expression of the above-mentioned regulatory genes, which may give us more information on their impact on cancer development and progression with possible using for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2012.1897DOI Listing

Publication Analysis

Top Keywords

zincii ions
24
prostate cell
12
cell lines
12
expression
8
ions expression
8
prostate
8
accumulate zincii
8
prostate cells
8
expression bcl-2
8
cell model
8

Similar Publications

Redox-active Co(II) and Zn(II) Pincer Complexes as High-Capacity Anode Materials for Lithium-Ion Batteries.

Adv Sci (Weinh)

December 2024

Department of Chemistry and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, South Korea.

To address the ongoing demand for high-performance energy storage devices, it is crucial to identify new electrode materials. Lithium-ion batteries (LIBs) store energy via the electrochemical redox process, so their electrode materials should have reversible redox properties for rechargeability. On that note, redox-active metal complexes are explored as innovative electrode materials for LIBs.

View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

To investigate the influence of phthalocyanine aggregation on their photodynamic activity, a series of six cationic water-soluble zinc(II) phthalocyanines bearing from four to sixteen 4-((diethylmethylammonium)methyl)phenoxy substituents was synthesized. Depending on their structure, the phthalocyanines have different aggregation behaviors in phosphate buffer solutions ranging from fully assembled to monomeric states. Remarkably, independent of aggregation in buffer, very high photodynamic efficiencies against the tumor cell lines MCF-7 and MDA-MB-231 in the nanomolar range were found for all investigated phthalocyanine, and the IC(light) varied from 27 to 358 nM (3.

View Article and Find Full Text PDF

The present work describes the synthesis of new terpyridine (tpy) molecules possessing functionalized long alkyl chains at the 4'-position associated with a planar structure with considerable delocalization. Out of the three synthesized tpy derivatives (L1, L2, and L3), L2 containing an ester group at the end of the alkyl chain emerged as an excellent probe for the selective detection of Zn. The detection of Zn ions under biological conditions was achieved by the introduction of a distinct aliphatic undecanoic ester chain at the 4'-position of the core terpyridine ring, thereby making it more lipophilic.

View Article and Find Full Text PDF

Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments.

J Inorg Biochem

February 2025

Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States. Electronic address:

Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!