Purpose: To understand the ability of microarray-based comparative genomic hybridization to detect copy-number variation in the presence of maternal cell contamination.

Methods: To simulate maternal cell contamination, normal female DNA was mixed at various levels with DNA carrying known copy-number variations. Mixtures were run on a whole-genome 135K oligonucleotide-based array. Data were analyzed with custom analysis software.

Results: The array and software design allowed detection of larger copy-number variations at higher levels of maternal cell contamination than smaller copy-number variations. The smallest duplications and deletions were obscured at 22-31% and 55-58% maternal cell contamination, respectively. With male fetal samples, the sex chromosome ratios started showing observable shifts at ~10% maternal cell contamination.

Conclusion: As knowledge of the maternal cell contamination level aids in interpretation of array results, we recommend concurrent, independent maternal cell contamination studies for all fetal samples for accurate and timely results. With male fetal samples in our laboratory, interfering levels of maternal cell contamination can be excluded when the sex chromosome plots appear normal. Thus, reportable male microarray-based comparative genomic hybridization results may be occasionally achieved without maternal cell contamination studies. Because the effects of maternal cell contamination on microarray results are dependent on array platforms, experimental techniques, and software algorithms, each laboratory should perform its own analysis to determine acceptable levels of maternal cell contamination for its assays.

Download full-text PDF

Source
http://dx.doi.org/10.1038/gim.2012.77DOI Listing

Publication Analysis

Top Keywords

maternal cell
48
cell contamination
40
maternal
12
cell
12
copy-number variations
12
levels maternal
12
fetal samples
12
contamination
10
microarray-based comparative
8
comparative genomic
8

Similar Publications

To successfully establish and maintain pregnancy in pigs, a variety of factors must work together at the maternal-conceptus interface to form an immune environment appropriate for both the mother and the conceptus. Our transcriptomics study has shown that cluster of differentiation ligand 40 (CD40L) and its receptor CD40, which are known to play important roles in regulating cell- and antibody-mediated immunity, are expressed in the endometrium during early pregnancy. However, the roles of the CD40L and CD40 signaling system are not well understood.

View Article and Find Full Text PDF

Objective: To investigate the roles of fecal short-chain fatty acids (SCFAs) in polycystic ovary syndrome (PCOS).

Methods: The levels of SCFAs (acetate, propionate, and butyrate) in 83 patients with PCOS and 63 controls were measured, and their relationships with various metabolic parameters were analyzed. Intestinal microbiome analysis was conducted to identify relevant bacteria.

View Article and Find Full Text PDF

Circadian factors CLOCK and BMAL1 promote nonhomologous end joining and antagonize cellular senescence.

Life Med

April 2024

Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

View Article and Find Full Text PDF

The immune landscape of fetal chorionic villous tissue in term placenta.

Front Immunol

January 2025

Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.

Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).

View Article and Find Full Text PDF

Background: Patients with pancreatic ductal adenocarcinoma (PDAC) face a highly unfavorable outcome and have a poor response to standard treatments. Immunotherapy, especially therapy based on natural killer (NK) cells, presents a promising avenue for the treatment of PDAC.

Aims: This research endeavor seeks to formulate a predictive tool specifically designed for PDAC based on NK cell-related long non-coding RNA (lncRNA), revealing new molecular subtypes of PDAC to promote personalized and precision treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!