Alterations in synaptic plasticity and neurocognitive function with age have been well documented in the literature. These changes are accompanied by modifications of neurotransmitter systems in the central nervous system (CNS). The serotonergic system in particular plays an important role in attention, alertness and cognition. Disturbances in serotonergic function have been implicated in differing neurological and neuropsychiatric disorders including depression, psychosis aggression and dementia. The serotonin receptor subtype 5HT6 is distributed within CNS regions relevant to learning and memory, including the striatum, cortex and hippocampus. We examined here the effects of acute and chronic administration of the 5HT6 receptor antagonist SB742457 on performance in a delayed non-matching-to-sample task (DNMS), which was used to identify neurocognitive differences between middle-aged (MA, 13 months) and young adult (YG, 3 months) rats. We found that MA rats have significantly lower performance in the DNMS task compared to YG rats. Acute administration of SB742457 (3 mg/kg/po) significantly improved performance of the MA rats. Chronic administration of SB742457 (3 mg/kg) reversed the age-related deficit of the MA to match their performance to that of YG rats. Furthermore, these improvements were observed for 1 week post-SB742457 treatment cessation. The acute and chronic effects of this treatment suggest that there is both an immediate effect on neurotransmitter action and potentially a longer-term modification of synaptic plasticity. Together these data indicate a role for modulation of the serotonergic system in the development of cognition-enhancing agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2012.06.034 | DOI Listing |
Am J Hum Genet
September 2024
MRC Weatherall Institute of Molecular Medicine, Oxford OX39DS, UK; Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK; NIHR Oxford Biomedical Research Centre, Oxford OX39DU, UK. Electronic address:
While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
July 2024
School of Communication Engineering, Xidian University, Xi'an, China.
Lung cancer is considered a cause of increased mortality rate due to delays in diagnostics. There is an urgent need to develop an effective lung cancer prediction model that will help in the early diagnosis of cancer and save patients from unnecessary treatments. The objective of the current paper is to meet the extensiveness measure by using collaborative feature selection and feature extraction methods to enhance the dendritic neural model (DNM) in comparison to traditional machine learning (ML) models with minimum features and boost the accuracy, precision, and sensitivity of lung cancer prediction.
View Article and Find Full Text PDFJ Neurogenet
March 2024
Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China.
As the contribution of mutations (DNMs) to human genetic diseases has been gradually uncovered, analyzing the global research landscape over the past 20 years is essential. Because of the large and rapidly increasing number of publications in this field, understanding the current landscape of the contribution of DNMs in the human genome to genetic diseases remains a challenge. Bibliometric analysis provides an approach for visualizing these studies using information in published records in a specific field.
View Article and Find Full Text PDFKaohsiung J Med Sci
June 2024
Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Working memory (WM) is a cognitive function important for guiding the on-going or upcoming behavior. A memory-related protein Arc (activity-regulated cytoskeleton-associated protein) is implicated in long-term memory consolidation. Recent evidence further suggests the involvement of hippocampal Arc in spatial WM.
View Article and Find Full Text PDFTransplant Proc
April 2024
Department of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!