A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells. | LitMetric

Azithromycin is a macrolide antibiotic with well-described anti-inflammatory properties which can be attributed, at least partially, to its action on macrophages. We have previously shown, with 18 different macrolide molecules, that IL-6 and PGE₂ inhibition correlates with macrolide accumulation, as well as with their binding to phospholipids in J774A.1 cells. The present study was performed in order to substantiate the hypothesis that biological membranes are a target for macrolide anti-inflammatory activity. By analyzing the effect of azithromycin on overall eicosanoid production, we found that in LPS-stimulated J774A.1 cells, azithromycin, like indomethacin, inhibited the synthesis of all eicosanoids produced downstream of COX. Upstream of COX, azithromycin inhibited arachidonic acid release in the same way as a cPLA₂ inhibitor, while indomethacin had no effect. Further comparison revealed that in LPS-stimulated J774A.1 cells, the cPLA₂ inhibitor showed the same profile of inhibition as azithromycin in inhibiting PGE₂, IL-6, IL-12p40 and arachidonic acid release. Therefore, we propose that the anti-inflammatory activity of azithromycin in this model may be due to interactions with cPLA₂, causing inadequate translocation of the enzyme or disturbing physical interactions with its substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2012.06.011DOI Listing

Publication Analysis

Top Keywords

j774a1 cells
16
lps-stimulated j774a1
12
cells azithromycin
8
anti-inflammatory activity
8
arachidonic acid
8
acid release
8
cpla₂ inhibitor
8
azithromycin
7
anti-inflammatory
4
anti-inflammatory mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!