Recent studies have found that blockers of sulfonylureas receptor 1(SUR1) might have cardiac ischemic protective effects. We evaluated the effects of a selective SUR1 blocker gliclazide on cardiac function and arrhythmia after isoprenaline-induced myocardial injury in obese rats. Diet-induced obese rats received isoprenaline or saline shots subcutaneously. Gliclazide or saline was given q12 h for 48 h to rats received isoprenaline. We measured ECG and hemodynamic parameters and collected blood samples for CK-MB, glucose and lipid profile determination, and then harvested hearts for water content, histological and immunohistochemical analysis and infarct size measurements. The obese rats' hearts receiving isoprenaline-induced myocardial injury showed up-regulated SUR-1 expression in the peri-microvascular area. Obese rats receiving gliclazide lavage had less severe arrhythmia (ASI: 4.00 ± 0.61 vs. 2.14 ± 0.39, P<0.05) and myocardial edema (water percentage: 85.16 ± 0.46% vs. 81.56 ± 0.57%, P<0.05). Less infarct size (47.6 ± 12.8% vs. 32.7 ± 9.1%, P<0.05) and improved diastolic function (LVEDP: 6.86 ± 0.85% vs. 2.51 ± 1.09%, P<0.05;-(dp/dt)(max): -1663.6 ± 387.91 mmHg/s vs. -2834.8 ± 290.76 mmHg/s, P<0.05) were also observed in rats receiving gliclazide lavage. Blocking of the SUR1 thus exerts a protective effect on the isoprenaline-induced myocardial injury in obese rats. That SUR1 blocker leads to ischemic protection suggesting a critical biological role of SUR1 in regulating the function of the cardiovascular system than previously recognized under pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2012.06.039 | DOI Listing |
Nutrients
December 2024
Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.
Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil ( L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria. Electronic address:
Camel α-Lactalbumin (α-LAC) has been shown to exert bioactivities for Reactive oxygen species (ROS) scavenging and anti-inflammation, showing the ability to treat obesity-related metabolic disorders. Herein, we present a novel process to purify α-LAC in a single chromatographic step from camel whey in a flow-through format. We also demonstrate the role of α-LAC modulation strategies for the treatment of obesity.
View Article and Find Full Text PDFCells
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates.
The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!