A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes. | LitMetric

Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India.

Published: November 2012

DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of K(b), 5.21×10(4)M(-1) that are higher than that obtained for 2 (red-shift, 2 nm; K(b), 1.73×10(4)M(-1)) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the E(pc) and E(0)' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HO()) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2012.05.006DOI Listing

Publication Analysis

Top Keywords

dna binding
12
complexes dna
12
dna
11
complexes
10
cuii complexes
8
dna cleavage
8
binding
5
analytical methods
4
methods determine
4
determine comparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!