Discovery and optimization of novel purines as potent and selective CB2 agonists.

Bioorg Med Chem Lett

Discovery Chemistry, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

Published: August 2012

AI Article Synopsis

Article Abstract

A focused screening strategy identified thienopyrimidine 1 as a hCB2 cannabinoid receptor agonist with moderate selectivity over the hCB1 receptor. This initial hit suffered from poor in vitro metabolic stability and high in vivo clearance. Structure-activity relationships describe the optimization and modification to a less lipophilic purine core. Examples from this novel series were found to be highly potent and fully efficacious agonists of the human CB2 receptor with excellent selectivity against CB1. Compound 10 possesses good biopharmaceutical properties, is highly water soluble and demonstrates robust oral activity in rodent models of joint pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.06.035DOI Listing

Publication Analysis

Top Keywords

discovery optimization
4
optimization novel
4
novel purines
4
purines potent
4
potent selective
4
selective cb2
4
cb2 agonists
4
agonists focused
4
focused screening
4
screening strategy
4

Similar Publications

Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.

View Article and Find Full Text PDF

Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy.

Pharmaceuticals (Basel)

December 2024

Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di S. Pio V 44, I-00165 Rome, Italy.

, , and parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities.

View Article and Find Full Text PDF

Influence of Initial Gap, Voltage, and Additives on Zinc Microcolumn Morphology by Local Electrochemical Deposition.

Sensors (Basel)

January 2025

State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.

Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!