A new class of benzoxazole and benzothiazole amide derivatives exhibiting potent CYP3A4 inhibiting properties was identified. Extensive lead optimization was aimed at improving the CYP3A4 inhibitory properties as well as overall ADME profile of these amide derivatives. This led to the identification of thiazol-5-ylmethyl (2S,3R)-4-(2-(ethyl(methyl)amino)-N-isobutylbenzo[d]oxazole-6-carboxamido)-3-hydroxy-1-phenylbutan-2-ylcarbamate (C1) as a lead candidate for this class. This compound together with structurally similar analogues demonstrated excellent 'boosting' properties when tested in dogs. These findings warrant further evaluation of their properties in an effort to identify valuable alternatives to Ritonavir as pharmacokinetic enhancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.06.022DOI Listing

Publication Analysis

Top Keywords

benzoxazole benzothiazole
8
pharmacokinetic enhancers
8
amide derivatives
8
benzothiazole amides
4
amides novel
4
novel pharmacokinetic
4
enhancers hiv
4
hiv protease
4
protease inhibitors
4
inhibitors class
4

Similar Publications

Ru(II)-Catalyzed "On Water" direct aryl C(sp)-H amidation of 2-arylbenzo[d]-thiazole/oxazole with acyl azide is reported under silver-free condition. Deuterium scrambling experiments suggested reversible C-H activation catalyzed by active cationic ruthenium species. The organic solvents such as DCE, DMF, DMSO, MeCN, dioxane, and PhMe were not conducive for the C-H amidation except for PhCl in which case, however, inferior yield (31 %) was obtained.

View Article and Find Full Text PDF

Two novel SNS-donor palladium(II) complexes of benzoxazole and benzothiazole derivatives as potential anticancer agents.

Dalton Trans

December 2024

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.

Two novel mononuclear palladium(II) complexes, [PdL1Cl]Cl (1) and [PdL2Cl]Cl (2) with SNS-donor ligands [where L1 = -(4-(benzo[]oxazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide, L2 = -(4-(benzo[]thiazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide], were synthesized and characterized. antiproliferative activity tests showed that the two palladium(II) complexes displayed excellent antiproliferative activity against all tested cancer cell lines, especially human colon cancer HCT-116, human liver cancer HepG-2, and human breast cancer MDA-MB-231 cells. Spectacularly, complexes 1 and 2 exhibited approximately 8.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopamine-producing neurons, leading to symptoms like slow movement, tremors, and stiffness.
  • The disease's progression is influenced by both genetic and environmental factors, with treatments often involving monoamine oxidase B (MAO-B) inhibitors, which can help manage symptoms but may cause side effects.
  • Recent research has identified various natural compounds that could serve as potential MAO-B inhibitors, providing insights for developing safer and more effective treatments for Parkinson's disease.
View Article and Find Full Text PDF

A critical analysis of design, binding pattern and SAR of benzo-fused heteronuclear compounds as VEGFR-2 inhibitors.

Bioorg Med Chem

December 2024

Drug Design and Synthesis Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.

Vascular endothelial growth factors (VEGFs) are a class of homodimeric ligands that bind to their receptors (VEGFRs) to carryout physiological and pathological angiogenesis essential for regulating homeostasis of body. Overexpression of VEGF results in metastasis of benign tumor into malignant tumor. An active role of VEGFR-2 in cancer angiogenesis makes it a major target for cancer therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * This method allows for the production of various benzothiazoles and benzoxazoles in good to excellent yields, even on a larger scale, under mild conditions.
  • * The process involves a proposed reaction mechanism where (-CFPhO)P helps in amide formation, while its hydrolysis product aids in the cyclization reaction to achieve the desired compounds.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!