The isomerization of olefins by complexes of the pincer-ligated iridium species ((tBu)PCP)Ir ((tBu)PCP = κ(3)-C(6)H(3)-2,6-(CH(2)P(t)Bu(2))(2)) and ((tBu)POCOP)Ir ((tBu)POCOP = κ(3)-C(6)H(3)-2,6-(OP(t)Bu(2))(2)) has been investigated by computational and experimental methods. The corresponding dihydrides, (pincer)IrH(2), are known to hydrogenate olefins via initial Ir-H addition across the double bond. Such an addition is also the initial step in the mechanism most widely proposed for olefin isomerization (the "hydride addition pathway"); however, the results of kinetics experiments and DFT calculations (using both M06 and PBE functionals) indicate that this is not the operative pathway for isomerization in this case. Instead, (pincer)Ir(η(2)-olefin) species undergo isomerization via the formation of (pincer)Ir(η(3)-allyl)(H) intermediates; one example of such a species, ((tBu)POCOP)Ir(η(3)-propenyl)(H), was independently generated, spectroscopically characterized, and observed to convert to ((tBu)POCOP)Ir(η(2)-propene). Surprisingly, the DFT calculations indicate that the conversion of the η(2)-olefin complex to the η(3)-allyl hydride takes place via initial dissociation of the Ir-olefin π-bond to give a σ-complex of the allylic C-H bond; this intermediate then undergoes C-H bond oxidative cleavage to give an iridium η(1)-allyl hydride which "closes" to give the η(3)-allyl hydride. Subsequently, the η(3)-allyl group "opens" in the opposite sense to give a new η(1)-allyl (thus completing what is formally a 1,3 shift of Ir), which undergoes C-H elimination and π-coordination to give a coordinated olefin that has undergone double-bond migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja301464c | DOI Listing |
Nano Lett
January 2025
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.
The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, VIT-AP University, Amaravati, 522237, India.
CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.
View Article and Find Full Text PDFChem Asian J
January 2025
Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, school of chemistry and chemical engineering, Shanda nan Road 27, 250100, Jinan, CHINA.
Converting 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) via electrooxidation is a sustainable approach for generating high-value chemicals from biomass. This study presents Mn-doped Ni(OH)2 nanosheets as an effective electrocatalyst for HMF electrooxidation. The Mn-doped Ni(OH)2 nanosheets were synthesized through a microwave-assisted deep eutectic solvent (DES) strategy, followed by an alkaline reflux process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.
The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X) species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX) preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX) analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX), (InX), and (TlX)) are not expected to engage in a reaction with benzene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!